

Assessment Run B34 2022

Estrogen receptor (ER)

Purpose

Evaluation of the technical performance and level of analytical sensitivity and specificity of IHC tests performed by the NordiQC participants for demonstration of estrogen receptor (ER) expression in breast carcinomas. IHC, based on the rmAb clones SP1 and EP1, performed in a NordiQC reference laboratory served as reference standard methods and were used to identify breast carcinomas with the dynamic, diagnostic and critical relevant expression levels of ER. The obtained score in NordiQC is indicative of the performance of the IHC tests, but due to the limited number and composition of samples internal validation and extended quality control (e.g. regularly measurement of ER results) is needed.

Material

The slide to be stained for ER comprised:

No.	Tissue	ER-positivity*	ER-intensity*				
1.	Tonsil	1-5%	Weak to moderate				
2.	Uterine cervix	80-90%	Moderate to strong				
3.	Breast carcinoma	0%	Negative				
4.	Breast carcinoma	90-100%	Moderate to strong				
5.	Breast carcinoma	40-90%	Weak to strong				

^{*} ER-status and staining pattern as characterized by the NordiQC reference laboratorie using the rmAb clones EP1 and SP1.

All tissues were fixed in 10% neutral buffered formalin for 24-48 hours and processed according to Allison et al.¹ Estrogen and Progesterone Receptor Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Guideline Update. Arch Pathol Lab Med. 2020 May;144(5):545-563.

Criteria for assessing an ER staining as **optimal** included:

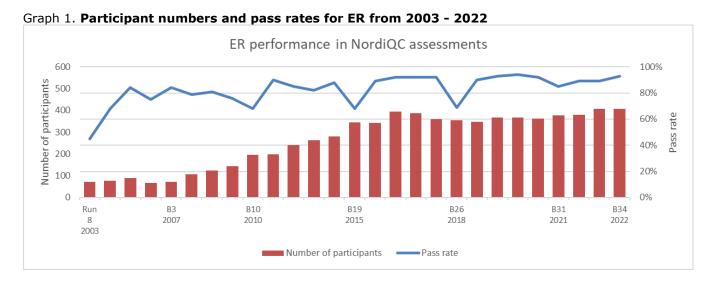
- A moderate to strong, distinct nuclear staining reaction of virtually all the columnar epithelial cells, most squamous epithelial and stromal cells (with the exception of endothelial cells and lymphoid cells) in the uterine cervix.
- An at least weak to moderate nuclear staining reaction in scattered follicular dendritic cells/T-cells and squamous epithelial cells in the tonsil.
- An at least weak to moderate distinct nuclear staining reaction in the appropriate proportion of the neoplastic cells in the breast carcinomas no. 4 and 5.
- No nuclear staining reaction in the neoplastic cells in the breast carcinoma no. 3.
- No more than a weak cytoplasmic reaction in cells with a strong nuclear staining reaction.
- An ER IHC result was classified as **good** if ≥ 10% of the neoplastic cells in the breast carcinomas no. 4 and 5 showed an at least weak nuclear staining reaction but in a significantly reduced proportion compared to the reference range. An at least weak to moderate nuclear staining reaction in the majority of the uterine columnar and squamous epithelial cells and in the dispersed cells expected to be positive in the tonsil.
 - An IHC result was also assessed as **good**, if the signal-to-noise ratio was low, e.g., because of moderate cytoplasmic reaction, excessive counterstaining or impaired morphology but the interpretation was not compromised.
- An ER IHC result was assessed as **borderline** if ≥ 1% and < 10% of the neoplastic cells in one of the breast carcinomas no. 4 and 5 showed a nuclear staining reaction. A negative staining reaction of the cells expected to be demonstrated in tonsil/uterine cervix can also be marked as **borderline**. An IHC result could also be assessed as **borderline**, if the signal-to-noise ratio was low, e.g., because of moderate cytoplasmic reaction, excessive counterstaining or impaired morphology, to the extent where interpretation was compromised.
- An IHC result was assessed as **poor** if a false negative staining (< 1%) was seen in one of the breast carcinomas no. 4 and 5 or false positive staining (≥ 1%) was seen in the breast carcinoma no. 3.
 Poor signal-to-noise ratio as described above could also result in a grade of **poor** where interpretation was severely hampered.

Participation

Number of laboratories registered for ER, B33	431
Number of laboratories returning slides	406 (94%)

At the date of assessment, 94% of the participants had returned the circulated NordiQC slides. All slides returned after the assessment were assessed and laboratories received advice if the result was insufficient, but the data were not included in this report.

Results


406 laboratories participated in this assessment. 376 of 406 (93%) achieved a sufficient mark (optimal or good). Table 1 summarizes antibodies (Abs) used and assessment marks given (see page 4).

The most common staining faults reported were weak staining and excessive counterstaining hindering interpretation, and the most frequent causes of insufficient staining reactions were:

- Insufficient HIER time or HIER in acidic buffer
- Use of detection systems with low sensitivity
- Unexplained / technical issues during staining process

Performance history

In this run the pass rate of 93% (proportion of sufficient results) was higher than for run B32 and B33 (both 89%) and the pass rate has been stable at a high and satisfactory level in runs between 2016-2022, with the exception of run B26 (see Graph 1).

Fluctuations in pass rates (e.g. as seen in runs B19 and B26), is likely caused by the circulation of more challenging material. In order to ensure the consistency of the material circulated, NordiQC evaluates the material with two reference standard methods and monitors the ER expression levels throughout all TMAs used in the assessment. Fluctuation in pass rates may also be influenced by incoming new participants, but in the two latest runs about 10% new participants were registered compared to e.g. runs B31 and B32 with a similar pass rate observed in these runs.

Conclusion

In this assessment, the rabbit monoclonal antibodies (rmAb) clones **SP1** and **EP1** and the mouse monoclonal Ab (mAb) clone **6F11** could all be used to provide an optimal result for demonstration of ER. The majority of participants (89%, 363 of 406) used Ready-To-Use (RTU) systems, with the majority of these (265 of 363, 73%) using the Ventana/Roche platform. Both RTU and concentrated primary antibody formats could be used successfully: the pass rate for participants using RTU antibodies was 93%, versus 86% for concentrated formats. "Plug and play" RTU assays (where a RTU clone was used on its intended automated platform by vendor recommended protocol settings) gave an overall pass rate of 95% across the two major manufacturers (Ventana/Roche BenchMark: 89% and Dako/Agilent Omnis: 100%).

The most common feature of insufficient results in this assessment was low analytical sensitivity giving a weak or false negative staining reaction. Low analytical sensitivity and weak demonstration of ER was often further complicated by excessive counterstaining, or sections showing poor signal-to-noise ratios,

leading to difficulties in scoring. In 3 cases, the counterstain was so excessive as to preclude interpretation entirely. An aberrant nuclear staining reaction in stromal cells in tonsil was seen in one case where extended HIER with high pH buffer was used with clone 6F11, but no false positive staining in the ER negative carcinoma was seen with this clone in this run.

Uterine cervix and tonsil are recommended as positive tissue controls for ER. In uterine cervix, virtually all squamous and columnar epithelial cells must show a moderate to strong and distinct nuclear staining reaction, whereas endothelial cells and lymphocytes must be negative. Tonsil is particularly recommended as a tool to monitor the level of analytical sensitivity for the demonstration of ER. Dispersed follicular dendritic cells² in germinal centers and squamous epithelial cells must show an at least weak, distinct nuclear staining reaction. In addition, tonsil can be used as negative tissue control, as B-cells in mantle zones and within germinal centers must be negative.

Table 1. Antibodies and assessment marks for ER. B34

Concentrated antibodies n mAb clone 6F11 13 rmAb clone EP1 5 2 rmAb clone SP1 3 rmAb clone SP1 3 rmAb clone BP6026 2 rmAb clone QR013 1 rmAb clone ZR147 1 Ready-To-Use antibodies mAb clone 6F11 PA0009/PA0151 (VRPS³) 3 mAb clone 6F11 PA0009/PA0151 (LMPS⁴) 14 mAb clone 6F11 PM048/PDM048-10MM 15 rmAb EP1 IR/IS084 (VRPS³) 6	Dako/Agilent Cell Marque Thermo Scientific Cell Marque Zytomed AbCam BioCare Medical DCS BioLynx Quartett Zeta Corporation	Optimal 6 2 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Good 5 3 1 1 0 0 0 0 2	2 2 2 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Suff. ¹ 85% 71% 89%	OR ² 46% 29% 84%
rmAb clone EP1 rmAb clone SP1 rmAb clone SP1 rmAb clone BP6026 rmAb clone QR013 rmAb clone QR013 rmAb clone QR147 Ready-To-Use antibodies mAb clone 6F11 PA0009/PA0151 (VRPS³) mAb clone 6F11 PA0009/PA0151 (LMPS⁴) mAb clone 6F11 PDM048/PDM048-10MM rmAb EP1	Dako/Agilent Cell Marque Thermo Scientific Cell Marque Zytomed AbCam BioCare Medical DCS BioLynx Quartett Zeta Corporation Leica Biosystems Leica Biosystems	2 16 2 1 1	3 1 0 0 0 0	2 2 0 0	0 0 0	71% 89% -	29%
rmAb clone SP1 2 rmAb clone SP1 2 2 4 3 1 1 1 rmAb clone BP6026 2 rmAb clone QR013 rmAb clone ZR147 Ready-To-Use antibodies mAb clone 6F11 PA0009/PA0151 (VRPS³) mAb clone 6F11 PA0009/PA0151 (LMPS⁴) mAb clone 6F11 PDM048/PDM048-10MM rmAb EP1 6	Cell Marque Thermo Scientific Cell Marque Zytomed AbCam BioCare Medical DCS BioLynx Quartett Zeta Corporation Leica Biosystems	16 2 1 1	1 0 0 0	2 0 0	0 0 0	89%	84%
rmAb clone SP1 2 2 2 3 1 1 1 1 1 2 2 3 1 1 1 1 1 1 1	Cell Marque Zytomed AbCam BioCare Medical DCS BioLynx Quartett Zeta Corporation Leica Biosystems Leica Biosystems	2 1 1 0	0 0 0	0	0	-	
rmAb clone QR013 rmAb clone ZR147 Ready-To-Use antibodies mAb clone 6F11 PA0009/PA0151 (VRPS³) mAb clone 6F11 PA0009/PA0151 (LMPS⁴) mAb clone 6F11 PDM048/PDM048-10MM rmAb EP1	Quartett Zeta Corporation Leica Biosystems Leica Biosystems	1 1 0	0	0	0		-
rmAb clone ZR147 1 Ready-To-Use antibodies mAb clone 6F11 PA0009/PA0151 (VRPS³) mAb clone 6F11 PA0009/PA0151 (LMPS⁴) mAb clone 6F11 PDM048/PDM048-10MM rmAb EP1	Zeta Corporation Leica Biosystems Leica Biosystems	0	0	-	-	-	
Ready-To-Use antibodies mAb clone 6F11 PA0009/PA0151 (VRPS³) mAb clone 6F11 PA0009/PA0151 (LMPS⁴) mAb clone 6F11 PDM048/PDM048-10MM rmAb EP1	Leica Biosystems Leica Biosystems	0		0	_	•	-
mAb clone 6F11 PA0009/PA0151 (VRPS³) mAb clone 6F11 PA0009/PA0151 (LMPS⁴) mAb clone 6F11 PDM048/PDM048-10MM rmAb EP1 3 14	Leica Biosystems		2		0	-	-
PA0009/PA0151 (VRPS³) mAb clone 6F11 PA0009/PA0151 (LMPS⁴) mAb clone 6F11 PDM048/PDM048-10MM rmAb EP1 6	Leica Biosystems		2			Suff.1	OR ²
PA0009/PA0151 (LMPS ⁴) mAb clone 6F11 PDM048/PDM048-10MM rmAb EP1		10	_	1	0	-	-
PDM048/PDM048-10MM 1 rmAb EP1 6	Diagnostic Biosystems	10	2	1	1	86%	71%
]	1	0	0	0	-	-
IK/15004 (VKP5')	Dako/Agilent	4	1	0	1	83%	67%
rmAb EP1 IR/IS084 (LMPS⁴) 32	Dako/Agilent	19	9	3	1	88%	59%
rmAb EP1 GA084 (VRPS³) 39	Dako/Agilent	33	6	0	0	100%	85%
rmAb EP1 GA084 (LMPS⁴) 29	Dako/Agilent	15	12	2	0	93%	52%
rmAb EP1 AY710-50D	BioGenex	0	1	0	0	-	-
rmAb EP1 8361-C010 2	Sakura Finetek	2	0	0	0	-	-
rmAb clone SP1 790-4324/4325 (VRPS³) 44	Ventana/Roche	26	13	5	0	89%	59%
rmAb clone SP1 790-4324/4325 (LMPS⁴) 177	7 Ventana/Roche	110	60	5	2	96%	62%
rmAb clone SP1 249R-17/18 5	Cell Marque	3	2	0	0	-	-
rmAb clone SP1 M3011 1	Spring Biosystems	0	1	0	0	-	-
rmAb clone SP1 MAD-000306QD/V MAD-000306QD-7/N 2	Master Diagnostica Vitro SA	0	1	1	0	-	<u>-</u>
rmAb clone SP1 RMPD001 3	Diagnostic BioSystems	0	2	0	1	-	_
rmAb clone SP1 BRB056	Zytomed Systems	1	0	0	0	-	_
rmAB clone MXR034 RMA-1074 2	Fuxhou Maixin	2	0	0	0	-	-
Ab clone EAB-006 01.09.70.01.18.01 1	Essence	0	1	0	0	-	-
Total 400	5	254	122	24	6	376	
Proportion 1) Proportion of sufficient results (optimal		63%	30%	6%	1%		

Proportion of sufficient results (optimal or good) (≥5 assessed protocols).
 Proportion of optimal results (≥5 assessed protocols).
 Vendor Recommended Protocol Settings (VRPS) to a specific RTU product applied on the vendor recommended platform(s).
 Laboratory Modified Protocol Settings (LMPS) to a specific RTU product applied either on the vendor recommended platform(s) or other platforms.

Detailed analysis of ER: Run B34

The following protocol parameters were central to obtain optimal staining:

Concentrated antibodies

mAb clone **6F11**: Six optimal results were obtained, based on high pH Heat Induced Epitope Retrieval (HIER), using Cell Conditioning 1 (CC1, Ventana/Roche) (2/2)* or Bond Epitope Retrieval Solution 2 (BERS2) pH 9.0 (Leica Biosystems) (4/11) as retrieval buffer. The mAb was diluted in the range of 1:25-1:200 and combined most commonly with a 3-layer detection system. Using these protocol settings, 11 of 12 (92%) of laboratories produced a sufficient staining result (optimal and good), and 6 of 12 (50%) of laboratories produced an optimal result. Low pH HIER was not employed by any laboratory this run.

* (number of optimal results/number of laboratories using this HIER buffer)

rmAb clone **EP1**: Two optimal results were obtained, using protocols based on high pH HIER, using Target Retrieval Solution (TRS) pH 9 (3-in-1) (Dako/Agilent) (2/3) as retrieval buffer. The rmAb was diluted 1:50 and combined with a 2-layer detection system. Using these protocol settings, 3/3 (100%) laboratories produced a sufficient staining result.

rmAb clone **SP1**: 16 of 19 laboratories obtained optimal results. Protocols with optimal results were typically based on high pH HIER, using CC1 (Ventana/Roche) (9/9), TRS pH 9 (Dako/Agilent) (3/4), BERS2 pH 9.0 (Leica Biosystems) (3/3) or Tris-EDTA/EGTA pH 9 (1/2) as retrieval buffer. The rmAb was typically diluted in the range of 1:30-1:300 and combined with either a 2- or 3-layer detection system. Using these protocol settings, 17 of 19 (89%) laboratories produced a sufficient staining result.

Table 2 summarizes the overall proportion of optimal staining results when using the three most frequently used concentrated Abs on the most commonly used IHC staining platforms.

Table 2. Optimal results for ER using concentrated antibodies on the main IHC systems*

Concentrated antibodies	Dako/Agilent Autostainer		Dako/Agilent Omnis		Ventana BenchMark XT/Ultra/GX		Leica Biosystems Bond III / Max		
	TRS High pH 9.0	TRS Low pH 6.1	TRS High pH 9.0	TRS Low pH 6.1	CC1 pH 8.5	CC2 pH 6.0	BERS2 pH 9.0	BERS1 pH 6.0	
mAb clone 6F11	-	-	-	-	2/2**	-	4/11 (36%)	-	
rmAb clone EP1	0/2	-	2/3	-	0/1	-	0/1	-	
rmAb clone SP1	0/1	-	3/3	-	9/9 (100%)	-	3/3	-	

^{*} Antibody concentration applied as listed above, HIER buffers and detection kits used as provided by the vendors of the respective

Ready-To-Use antibodies and corresponding systems

mAb clone **6F11**, product. no. **PA0009/PA0151**, Leica Biosystems, Bond III/Bond Max: Protocols with optimal results were most often based on HIER using BERS2 (high pH) for 20-30 min., 15 min. incubation of the primary Ab and Bond Polymer Refine Detection (DS9800) as detection system. Using these protocol settings, 10 of 10 (100%) laboratories produced a sufficient staining result (optimal or good). One laboratory produced an optimal result with HIER using Bond Epitope Retrieval 1 (BERS1) (low pH) and the above parameters, but only 3 of 6 laboratories using this protocol produced a sufficient staining result.

rmAb clone **EP1**, product no. **IR084/IS084**, Dako/Agilent, Dako Autostainer+/Autostainer Link: Protocols with optimal results were based on HIER in PT-Link using TRS pH 9 (3-in-1) (efficient heating time 10-20 min. at 97-98°C), 18-40 min. incubation of the primary Ab (mode = 20 min) and EnVision FLEX (K8000/SM802, K8010/DM822), EnVision FLEX+ (K8002/SM802) or Rabbit EnVision+ (K4002/K4003) as detection system, with or without Rabbit Linker (K8009, K8019). Using these protocol settings, 19 of 21 (90%) laboratories produced a sufficient staining result. 10 laboratories used product no IR084/IS084 on other platforms. These were not included in the description above.

rmAb clone **EP1**, product no. **GA084**, Dako/Agilent, Dako Omnis:

Protocols with optimal results were typically based on HIER using TRS High pH (efficient heating time 30 min. at 97° C), 10-27 min. incubation of the primary Ab (mode = 10 min.) and EnVision FLEX (GV800) with or without rabbit linker (GV809) as detection system. Using these protocol settings, 60 of 60 (100%) laboratories produced a sufficient staining result.

4 laboratories used product no. GA084 on other platforms and are not included in the description above.

^{** (}number of optimal results/number of laboratories using this buffer).

rmAb clone **SP1**, product no. **790-4324/4325**, Ventana/Roche, BenchMark GX, XT, ULTRA: Protocols with optimal results were typically based on HIER using CC1 (efficient heating time 16-90 min.) (mode = 64 min.), 8-64 min. incubation of the primary Ab (mode range = 16-32 min.) and UltraView (760-500) with or without UltraView Amplification kit (760-080), iView (760-091) or OptiView (760-700) without amplification as detection system. Using these protocol settings, 200 of 211 (95%) laboratories produced a sufficient staining result.

3 laboratories used product no 790-4324/4325 on other platforms. These were not included in the description above.

Table 3 summarizes the proportion of sufficient and optimal marks for the most commonly used RTU systems. The performance was evaluated both as "true" plug-and-play systems performed accordingly to the vendor recommendations and by laboratory modified systems changing basal protocol settings. Only protocol assays performed on the specific IHC platform are included.

Table 3. Comparison of pass rates for vendor recommended and laboratory modified RTU protocols

RTU systems		ommended settings*	Laboratory modified protocol settings**		
	Sufficient Optimal		Sufficient	Optimal	
Dako AS48 rmAb EP1 IR084/IS084	5/6 (83%)	4/6 (66%)	20/22 (91%)	13/22 (59%)	
Dako Omnis rmAb EP1 GA084	39/39 (100%)	33/39 (85%)	23/25 (92%)	14/25 (56%)	
Leica Bond mAb 6F11 PA0009/PA0151	2/3	0/3	12/14 (86%)	10/14 (71%)	
VMS Ultra/XT/GX rmAb SP1 790-4324/4325	39/44 (89%)	26/44 (59%)	167/174 (96%)	107/174 (61%)	

^{*} Protocol settings recommended by vendor – Retrieval method and duration, Ab incubation times, detection kit, IHC stainer/equipment.

** Modifications included: retrieval method, retrieval duration, retrieval reagents, Ab incubation time, detection kit and use of amplification. Only protocols performed on the specified vendor IHC stainer are included.

Comments

Since Run B30, the assessment criteria continue to be centered on the tissue controls, tonsil and uterine cervix, in concordance to the ASCO/CAP 2020 recommendation on ER IHC testing. The results of previous NordiQC ER assessments, along with the ASCO/CAP guidelines (2020) strongly suggest that the use of tonsil as control material is essential to ensure and monitor an appropriate lower limit of analytical sensitivity for demonstration of ER.

As in previous NordiQC runs for ER, the most common feature of an insufficient staining result on this assessment was inadequate analytical sensitivity, resulting in a weak or false negative staining reaction, with reduced detection of the ER epitope. This was seen in 57% of the insufficient results (17 of 30). A weak or false negative staining reaction was further complicated by excessive counterstain in 17% (5 of 30) of the insufficient results. In 3 cases, the counterstain was so excessive as to make resolution of the ER signal impossible. Poor signal-to-noise ratio and excessive background were seen in 3% and 7% of insufficient staining results respectively.

Virtually all laboratories were able to demonstrate ER in the high-level ER-expressing breast carcinoma (tissue core no. 4), in which 90-100% of the neoplastic cells were expected to be demonstrated and by the NordiQC reference standard methods, the cells showed a moderate to strong intensity. Demonstration of ER in the heterogeneous mid-level ER-expressing breast carcinoma (tissue core no. 5), in which an at least weak nuclear staining reaction of 40-90% of the neoplastic cells was expected, was much more challenging.

Ready-To-Use (RTU) Abs were used by 89% (363 of 406) of the participants. 93% (339 of 363) of these laboratories obtained a sufficient staining result, 62% optimal (226 of 363).

The Ventana/Roche RTU system, 790-4324/4325 for BenchMark based on the rmAb clone SP1 was in this assessment the most widely applied assay being used by 54% of the participants and gave an overall pass rate of 94%. Laboratory modified protocols (LMPS) were used by the majority (80%) of participants using this system. Optimal results could be obtained both by the vendor recommended protocol settings (VRPS) (16 min. incubation of the primary Ab, HIER in CC1 for 64 min. and UltraView or iView as detection kit) and by laboratory modified protocol settings (LPMS) adjusting incubation time of the primary Ab, HIER time, detection systems and use of amplification as shown in Table 3. In this assessment, VRPS were only used by 20% of the laboratories and provided a slightly lower overall pass

rate compared to LMPS as shown in Tables 1 and 3. Use of OptiView detection was a successful protocol modification, resulting in an increased pass rate of 94% (32/34 users) versus 87% for the manufacturer's protocol, with an optimal score rate of 85% (29 of 34) (see Table 3). Use of UltraView amplification in addition to the base detection system gave a pass rate of 100% (20 of 20) and an optimal rate of 85% (17 of 20).

The Dako/Agilent RTU system GA084 for Omnis, based on rmAb clone EP1 was used by 16% of the participants and gave an overall pass rate of 97%. The proportion of sufficient and optimal results obtained by the VRPS was slightly increased compared to LMPS, with 100% of labs using VRPS achieving sufficient results versus 92% of those using LPMS (see Table 3). 85% of participants using VRPS obtained an optimal result, compared to 56% for applying LPMS.

The Dako/Agilent RTU system IR084/IS084 for Autostainer, also based on the rmAb EP1 was used by 7% of the participants and provided an overall pass rate of 89%. As shown in Table 3, 79% (22 of 28) of the laboratories modified the protocol settings and obtained a slightly higher pass rate and increased proportion of optimal results compared to laboratories using the RTU system according to the Dako recommended protocol settings. The commonest and most successful modification, including use of a rabbit linker, was used by 14 laboratories: 93% of these obtained a sufficient mark (13/14) with 64% (9/14) optimal.

The Leica RTU system PA0009/PA0151 for BOND based on mAb 6F11, was used by 4% (17 of 406) of the participants and gave an overall pass rate of 82%. In this assessment, VRPS based on HIER in BERS1 (low pH) for 20 min., 15 min. incubation of the primary Ab and Bond Refine as detection system was used by three participants, with only two participants achieving sufficient results. Laboratories using a protocol modification increasing analytical sensitivity by using HIER in BERS2 (high pH), with or without extension of the primary antibody incubation time to 30 min. obtained a higher pass rate of 100% (11 of 11), 82% optimal (9 of 11). Extension of the primary antibody incubation time in conjunction with HIER in BERS1 was performed by two laboratories, neither of which obtained satisfactory results. However high pH retrieval should be used with caution with this clone due to the concerning number of false positive staining reactions noted by this modification in run B28 and sporadically in subsequent runs. In one case using extended HIER in BERS2 (40 min.), and aberrant nuclear reaction in stromal cells was observed.

In general, it must be emphasized that modifications of vendor recommended protocol settings for the RTU systems including migration of the RTU Abs to another platform than the intended, require a meticulous validation process for the end-users. As seen in this and previous assessments, modifications can be very successful but may also generate sub-optimal or aberrant results and therefore must be carefully monitored.

Concentrated antibody formats with laboratory-developed (LD) assays were used by 11% (43 of 406) of the participants. The three most commonly applied Abs mAb clone 6F11, rmAb clones EP1 and SP1 used in a LD assay could all provide an optimal result on the tissues supplied in this run, with the highest rate of optimal results seen with rmAb clone SP1 on the Ventana platform (9 of 9, 100%). Sufficient results were obtained with all three Abs on the main IHC platforms (Dako/Agilent, Leica Biosystems and Ventana/Roche), see Tables 1 and 2. The overall pass rate for all laboratories using concentrated antibody formats in this run was 86% (37 of 43), with 65% (28 of 43) obtaining optimal results.

Irrespective of the clone applied, careful calibration of the primary Ab concentration in combination with efficient HIER, preferably in an alkaline buffer (except for mAb clone 6F11 as discussed in run B28 and B15) were found to be the common core elements for an optimal performance.

In this run, 3-layer detection systems performed more successfully than 2-layer detection systems: 56% (24 of 43) of the laboratories using concentrated antibody formats used a 3-layer detection system, with 44% (19 of 43) using a 2-layer system. Laboratories using a 3-layer system obtained a pass rate of 92%, with 67% optimal, compared to 2-layer detection system, with a pass rate of 80%, 63% optimal.

Controls

In concordance with previous NordiQC runs, uterine cervix and tonsil were found to be valuable positive and negative tissue controls for ER staining: In the uterine cervix, optimal results were characterized by a moderate to strong, distinct nuclear staining reaction in virtually all epithelial cells throughout the squamous epithelium and in the glands. In the stromal compartment, moderate to strong nuclear staining reaction was seen in most cells except endothelial and lymphatic cells.

Use of tonsil as a control tissue is particularly recommended as a tool to monitor analytical sensitivity for the demonstration of ER, and this tissue is superior to uterine cervix in this context. It was observed, that

dispersed cells (most likely follicular dendritic cells²) in germinal centers and squamous epithelial cells were distinctively demonstrated in virtually all protocols providing an optimal result. If the follicular dendritic cells were negative or weakly demonstrated, a reduced proportion of ER positive cells were seen in the other tissues and, most critically, an unsatisfactory weak or even false negative staining pattern was seen in especially the breast carcinoma no. 5. In addition, tonsil can be used as supplementary negative tissue control, as B-cells in mantle zones and within germinal centers must be negative.

To validate the specificity of the IHC protocol further, an ER negative breast carcinoma must be included as primary negative tissue control, in which only remnants of normal epithelial and stromal cells should be ER positive, serving as internal positive tissue control. Positive staining reaction of the stromal cells in breast tissue indicates that the IHC protocol provides a high analytical sensitivity for ER, whereas the analytical sensitivity cannot reliably be evaluated in normal epithelial cells in breast as they typically express moderate to high levels of ER.

- 1. Kimberly H. Allison, M. Elizabeth H. Hammond, Mitchell Dowsett, Shannon E. McKernin, Lisa A. Carey, Patrick L. Fitzgibbons, Daniel F. Hayes, Sunil R. Lakhani, Mariana Chavez-MacGregor, Jane Perlmutter, Charles M. Perou, Meredith M. Regan, David L. Rimm, W. Fraser Symmans, Emina E. Torlakovic, Leticia Varella, Giuseppe Viale, Tracey F. Weisberg, Lisa M. McShane, and Antonio C. Wolff. Estrogen and Progesterone Receptor Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Guideline Update. Arch Pathol Lab Med. 2020 May;144(5):545-563
- 2. Sapino A, Cassoni P, Ferrero E, Bongiovanni M, Righi L, Fortunati N, Crafa P, Chiarle R, Bussolati G. Estrogen receptor alpha is a novel marker expressed by follicular dendritic cells in lymph nodes and tumor-associated lymphoid infiltrates. Am J Pathol. 2003 Oct;163(4):1313-20. PubMed PMID: 14507640

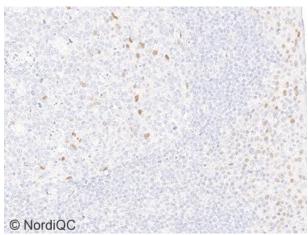


Fig. 1a
Optimal ER staining of the tonsil using the rmAb clone
SP1 as RTU format (790-4324) from Ventana/Roche,
using HIER in CC1 (pH 8.5), visualized by UltraView
and performed on BenchMark Ultra.

A moderate, distinct nuclear staining reaction is seen in dispersed follicular dendritic cells in the germinal center and squamous epithelial cells.

No nuclear staining reaction is seen in the mantle zone B-cells and in general a high signal-to-noise ratio is seen.

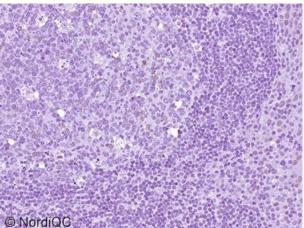


Fig. 1a
Insufficient ER staining of the tonsil using the mAb clone 6F11 giving a reduced analytical sensitivity in combination with a too extensive counterstaining compromising the read-out.
Only very few follicular dendritic and squamous epithelial cells are demonstrated.
Also compare with Figs. 2b – 4b, same protocol.

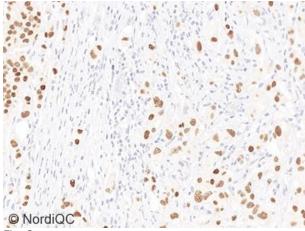


Fig. 2a
Optimal ER staining of the breast carcinoma, tissue core no. 4, with 90-100% cells being positive (moderate to strong) using same protocol as in Fig. 1a.

The neoplastic cells display a moderate to strong and distinct nuclear staining reaction.

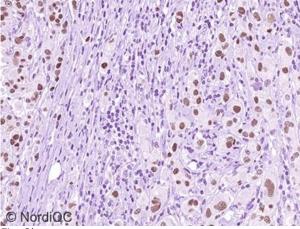
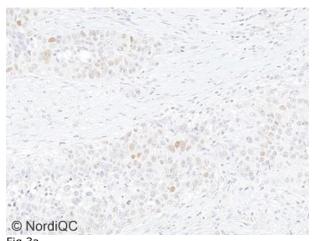



Fig. 2b ER staining of the breast carcinoma, tissue core no. 4, with 90-100% cells being positive using the same protocol as in Fig. 1b.

The neoplastic cells display a clear positive staining reaction for ER. However also compare with Fig. 3b, same protocol.

Optimal ER staining of the breast carcinoma, tissue core no. 5, with 40-90% of the neoplastic cells expected to be positive (weak to strong) using same protocol as in Figs. 1a and 2a.

The majority of the neoplastic cells display a weak to moderate and distinct nuclear staining reaction.

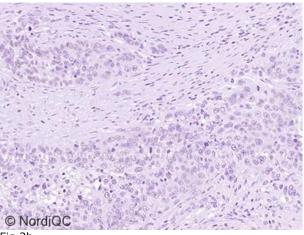


Fig 3b
Insufficient ER staining of the breast carcinoma, tissue core no. 5, with 40-90% of the neoplastic cells expected to be positive (weak to strong) using same protocol as in Figs. 1b and 2b.

The read-out and determination of ER positivity is significantly hampered due to the intense counterstaining.

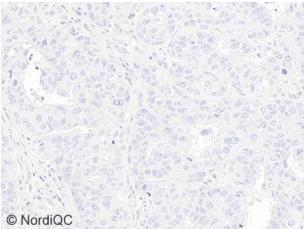


Fig 4a
Optimal ER staining of the breast carcinoma, tissue core no. 3, expected to be negative using same protocol as in Figs. 1a-3a.

No nuclear staining reaction is seen in the neoplastic cells and a high signal-to-noise ratio and balanced counterstaining is observed facilitating the read-out.

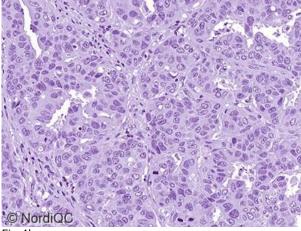


Fig 4b ER staining of the breast carcinoma, tissue core no. 3, expected to be negative using the same insufficient protocol as in Figs. 1a-3a.

The read-out and determination of ER positivity is significantly hampered due to the intense counterstaining.

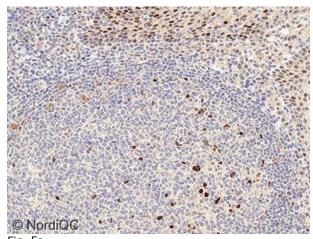


Fig. 5a
Insufficient ER staining of the tonsil using the mAb clone 6F11 too concentrated with HIER in an alkaline buffer.

A general aberrant background and cytoplasmic staining reaction is seen in both epithelial cells, macrophages and stromal cells compromising the read-out. Also compare with Fig. 5b, same protocol

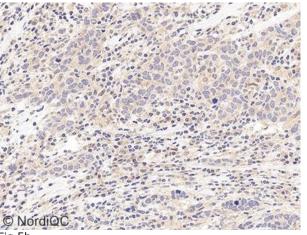


Fig 5b
Insufficient ER staining of the breast carcinoma, tissue core no. 3, expected to be negative using same protocol as in Fig. 5a.

The extensive cytoplasmic staining reaction of both stromal and neoplastic cells complicates the read-out and in addition few neoplastic cells show an equivocal false positive staining reaction (however, estimated to be <1%, overall).

NG/LE/SN 13.12.2022