

Lung tumours

Optimization of antibodies, selection, protocols and controls

NQC Workshop 2016

Ole Nielsen, Dept. of Pathology Odense University Hospital

Lung markers in NordiQC assessments:

- Napsin A (NQC in 2015)
- **■** TTF-1 (NQC in 2016)
- p63 (NQC in 2014)
- p40 (NQC in 2015)
- SYP (NQC in 2015)
- **■** Iu-ALK (NQC in 2015)

- WT1 (NQC in 2015)
- CEA (NQC in 2016)
- Calretinin (NQC in 2015)
- **■** CGA (NQC in 2016)
- Podoplanin (NQC in 2012)
- CD56 (NQC in 2013)

ANNUAL REVIEW ISSUE

Proficiency testing in immunohistochemistry—experiences from Nordic Immunohistochemical Quality Control (NordiQC)

Mogens Vyberg 1,2 · Søren Nielsen 1

Table 3 Major causes of insufficient staining reactions

- 1. Less successful antibodies (17 %)
 - a. Poor antibodiesa
 - b. Less robust antibodies^b
 - c. Poorly calibrated RTUs
 - d. Stainer platform dependent antibodies
- 2. Insufficiently calibrated antibody dilutions (20 %)
- 3. Insufficient or erroneous epitope retrieval (27 %)
- 4. Error-prone or less sensitive visualization systems^c (19 %)
- 5 Other (17 %)
 - a. Heat-induced impaired morphology
 - b. Proteolysis induced impaired morphology
 - c. Drying out phenomena
 - d. Stainer platform-dependant protocol issues
 - e. Excessive counterstaining impairing interpretation

Target	High scoring clones*	Low scoring clones*
Napsin A	mmAb: IP64 and MRQ-60	pAb: <mark>760-4446</mark> and <mark>352A-7x</mark>
TTF1	mmAb: SPT24 and SP141	mmAb: <mark>8G7G3/1</mark>
p63	mmAb: DAK-p63 and 4A4	mmAb: <mark>7JUL</mark>
p40	mmAb: BC28 and rmAb: ZR8	Many pAbs
SYP	mmAb: 27G12, rmAb MRQ-40 and DAK-SYNAP	mmAb: <mark>SY38</mark>
lu-ALK	rmAb: D5F3, mmAb: 5A4	mmAb: ALK1
WT1	mmAb: WT49 and 6F-H2	
CEA	mmAb: CEA31 and COL-1	mmAb: TF3H8-1 and II-7
CGA	pAb: A0430§ / IR502§, mmAb: LK2H10	rmAb: SP12, mmAb DAK-A3
Calretinin	rmAb: SP65, pAb 18-0211	rmAb: SP11
Podoplanin	mmAb: D2-40	mmAb: D2-40 #
CD56	rmAb: MRQ-42, mmAb: CD564 and 123C3	mmAb: 123C3 #

[#] Ventana platform § Products discontinued

^{*} on the basis of the assessments in NordiQC

Recommended protocols from NordiQC assessment schemes

Among protocols shown to give *optimal* staining results, one or more are selected to cover a spectrum of laboratories, antibodies, protocols and platforms.

Only the latest recommended protocols for each antibody/clone/epitope are listed here. Previously recommended protocols are not listed any longer but may be obtained from NordiQC on request.

Laboratories producing optimal stains are named in the protocols to encourage direct communication. If a laboratory wishes to remain anonymous, this must be specified when protocols are submitted.

mAb = mouse monoclonal antibody, rmAb = rabbit monoclonal antibody, pAb = polyclonal antibody

		, , _ , _ , _ , _ , _ , _ , _ , _ ,			
Epitope	Antibody		Platfo	orm	
Сриоре	Aithody	Dako	Leica	Ventana	Other
ASMA	mAb 1A4	ASMA-run45	ASMA-run45	ASMA-run45	ASMA-run45
	mAb asm-1	-	ASMA-run45	-	-
	rmAb EP188	-	-	ASMA-run45	-
CD4	mAb 1F6	CD4-run45	CD4-run45	CD4-run45	-
	mAb 4B12	CD4-run45	-	-	CD4-run45
	rmAb EP204	CD4-run45	-	-	-
	rmAb EPR6855	CD4-run45	-	-	-
	rmAb SP35	CD4-run45	-	CD4-run45	-
DOG1	mAb K9	DOG1-run45	DOG1-run45	DOG1-run45	-
	rmAb SP31	DOG1-run45	-	DOG1-run45	-
GATA3	mAb L50-823	GATA3-run45	GATA3-run45	GATA3-run45	GATA3-run45
Napsin A	mAb BS10	-	-	-	NapsinA- run45
	rmAb EPR6252	NapsinA- run45	-		
	mAb IP64	NapsinA- run45	NapsinA- run45	NapsinA- run45	NapsinA- run45
	rmAb KCG1.1	NapsinA- run45	-	-	-
	mAb MRQ-60	NapsinA- run45	-	-	-
	mAb TMU-Ad02	-	-	NapsinA- run45	-
p40	mAb BC28	p40-run45	p40-run45	p40-run45	-
	rmAb ZR8	p40-run45	-	p40-run45	p40-run45

Nordic Immunohistochemical Quality Control

Institute of Pathology, Aalborg University Hospital, Ladegaardsgade 3, P.O.Box 561, DK-9100 Aalborg, Denmark

Recommended protocol for Napsin A (IP64)

Obtained in General Module, run 44

Primary antibody

Clone IP64

Producer Leica/Novocastra

Product no. (Lot no.) NCL-L-Napsin A (6026035)

Dilution 1:50

Antibody Diluent K8016, Dako Diluent buffer and additive(s)

Incubation time / temperature 30 min./RT

Epitope retrieval, proteolysis None Proteolysis enzyme None Proteolysis time

Epitope retrieval, HIER

PT module Device

Target Retrieval Solution pH 9 (3-in-1), Dako Buffer, pH

None

Warm-up / heating max / resting time 97°C

Maximum heating temperature 8 min./20 min./18 min. (Start 85°)

Visualization system

3-step polymer conjugate Method

Dako, K8012 Producer, product no.

Incubation time / temperature 20 min. + 30 min./RT

Chromogen

Type DAB

Producer, product no. Dako, K8012 Incubation time / temperature 10 min./RT

Enhancement, type

Immunostainer

Autostainer Link 48, Dako Type

Napsin A / RUN 44 2015

Pass: 78 %

5555555555555	555	PERERERERERERERERERERER	54545454	SRSRSRS8	58585858585	252525252	252525	625252525252
Table 1. Antibodies	and a	assessment marks fo	r Napsin	A, run	44			
Concentrated antibodies	n	Vendor	Optimal	Good	Borderline	Poor	Suff. ¹	Suff. OPS ²
mAb clone IP64	86	Leica/Novocastra	39	39	6	2	91%	92%
mAb clone MRQ-60	8	Cell Marque	3	4	1	0	88%	100%
mAb, clone TMU-Ad02	4 3	Biocare IBL	1	2	4	0	43%	-
rmAb clone KCG1.1	2 2 1 1	Zytomed Diagnostic Biosystems Abcam Acris	1	5	0	0	100%	-
rmAb clone BC15	1	Zytomed	1	0	0	0	-	-
mAb, clone BS10	1	Nordic Biosite	1	0	0	0	-	-
rmAb clone EPR6252	1	Abcam	1	0	0	0	A STATE OF THE PARTY OF THE PAR	
pAb 352A-7x	8	Cell Marque	0	1	1	6	13%	-
Ready-To-ose antibodies								
mAb clone MRQ-60 760-4867	18	Ventana/Cell Marque	1	16	1	0 <	84%	-
mAb clone MRQ-60 352M-98	3	Cell Marque	0	3	0	0	-	-
mAb clone MRQ-60 MAD-000633QD	3	Master Diagnostica	0	3	0	0	-	-
rmAb clone BC15 API 3043	1	Biocare	0	0	1	0	-	-
mAb clone IP64 AM701-5M	1	BioGenex	0	0	1	0	-	-
mAb clone IP64 ZM- 0473	1	ZSGB-BIO	0	1	0	0	-	-
rmAb clone EP205 352R-18	1	Cell Marque	1	0	0	0	-	-
mAb clone MX015 MAB-0704	1	Maixin	0	1	0	0		
pAb 760-4446	12	Ventana/Cell Marque	0	1	0	11	8%	-]
pAb PPM428DS	1	Biocare	0	0	0	1	S. Salar Street, Street, or other Designation of the London of the Londo	AND STREET
pAb MP-394-DS6	1	Menapath	0	0	0	1	-	-
pAb RAB-0639	1	Maxim	0	1	0	0	-	-
Total	162		49	77	15	21	-	
Proportion			30%	48%	9%	13%	78%	

Napsin A / RUN 44 2015

The mAbs clones IP64, MRQ-60, TMU-Ad02, BS10 and the rmAbs KCG1.1, EP205, EPR6252, BC15 are all recommendable Abs for demonstrating Napsin A.

Selected clonesRetrievalDilution rangemmAb IP64HIER, High pH*1:50 - 1:400mmAb MRQ-60HIER, High pH1:500 - 1:800

Table 3. Proportion of optimal results for Napsin A using concentrated antibodies on the 3 main IHC systems*

Concentrated antibodies	Da Autost. Link / (ntana k XT / Ultra	Leica Bond III / Max				
	TRS pH 9.0	TRS pH 6.1	CC1 pH 8.5	CC2 pH 6.0	ER2 pH 9.0	ER1 pH 6.0			
mAb clone IP64	10/16 (63%)**	1/5 (20%)	(17/35 (49%)	1/1	2/8 (25%)	4/12 (33%)			
mAb clone MRQ-60	3/4	-	0/1	-		-			

^{*} Antibody concentration applied as listed above, HIER buffers and detection kits used as recommended by the vendors of the respective platforms.

^{*} HIER, pH6 can be used if a sensitive 3-step polymer/multimer detection system is used.

^{** (}number of optimal results/number of laboratories using this buffer)

Napsin A / RUN 44 2015

Controls

Positive: Kidney

* Virtually all epithelial cells of the proximal tubules must show an at least moderate, distinct granular cytoplasmic staining reaction.

Negative: Colon

Napsin A / RUN 44 2015

Kidney

Optimal-IP64-1/100-HIER/pH9-BOND

Optimal-IP64-1/100-HIER/pH9-BOND

Insuff.-IP64-1/400-HIER/pH6-BOND

Napsin A / RUN 44 2015

Kidney

Optimal-IP64-1/100-HIER/pH8.5-VBM

Insuff-pAb760-4446-HIER/pH8.5-VBM

Colon

Optimal-IP64-1/100-HIER/pH8.5-VBM

Insuff-pAb760-4446-HIER/pH8.5-VBM

TTF1 / RUN 47 2016

Pass: 67 %

Table 1. Antibodies and	asse	essment marks for TTF	1, run 46	5					
Concentrated antibodies	n	Vendor	Optimal	Good	Borderline	Poor	Suff.¹	Suff. OPS ²	
mAb clone 8G7G3/1	15 3 6 1	Dako/Agilent Thermo/NeoMarkers Cell Marque Zeta Corp.	0	0	14	11	0%		
mAb clone SPT24	120 9 5 2	Leica/Novocastra Monosan Immunologic BioCare	76	43	14		88%	89%	
rmAb clone EP229	1	Cell Marque	1	0	0	0	-	-	
rmAb clone SP141	1	Spring Bioscience	0	1	0	0	-	-	
Ready-To Use antibodies								No. of the last of	
mAb clone 8G7G3/1 790-4398	16	Ventana/Roche	0	1	7	В	7%	-	
mAb clone 8G7G3/1 IR056	31	Dako/Agilent	0	1	24	6	3%	- The state of the	
rmAb clone SP141 790-4756	50	Ventana/Roche	30	17	3		94%	94%	
mAb clone SPT24 PA0364	8	Leica/Novocastra	7	1	0		100%	100%	
mAb clone SPT24 MAD- 000486QD	2	Master Diagnostica SL	2	0	0	0	-	-	
mAb clone SPT24 API 3126	1	BioCare	1	0	0	0	-	-	
mAb clone MX011 MAB-0677	1	Maixin	1	0	0	0	-	-	
Total	272		118	64	62	28	-		
Proportion			43%	24%	23%	10%	67%		
4 \ Donor antique of auticions at a	/	- L' L							

1) Proportion of sufficient stains (optimal or good).

²⁾ Proportion of sufficient stains with optimal protocol settings only, see below.

TTF1 / RUN 47 2016

Recommendable clones	Retrieval	Dilution range
mAb SPT24	HIER, High pH*	1:20 - 1:400
rmAb SP141	HIER, High pH, CC1	RTU

^{*} HIER, pH6 can be used if a sensitive 3-step polymer/multimer detection system is used.

Table 4. The overall pass rate in the last 4 runs for the mmAb clones SPT24, 8G7G3/1 and the rmAb clone SP141

	SPT24 All protocol settings			SP1 All protoco	41* ol settings		8G70	
	Sufficient	Optimal		Sufficient	Optimal		Sufficient	Optimal
Participants	90% (429/479)	64% (308/479)		94% 59/63	65% 41/63		7% (17/259)	0% (0/259)
* Because rmAb cl	* Because rmAb clone SP141 is only recently introduced, data represents Run 39 and 46 only							

Table 3. Proportion of optimal results for TTF1 for the mAb clone SPT24 as concentrate on the 3 main IHC systems*

Concentrated antibodies	Dako Autostainer Link / Classic / OMNIS		Vent BenchMark	tana XT / Ultra	Leica Bond III / Max		
	TRS pH 9.0	TRS pH 6.1	CC1 pH 8.5	CC2 pH 6.0	ER2 pH 9.0	ER1 pH 6.0	
mAb clone SPT24	30/40** (75%)	2/2	24/58 (41%)	-	11/15 (73%)	2/2	

TTF1 / RUN 47 2016

Controls

Positive: Lung

- * A moderate to strong nuclear staining reaction in the columnar epithelial cells of the terminal bronchioles
- * A strong nuclear staining reaction in type II pneumocytes and basal epithelial cells of the terminal bronchioles

Negative: Colon

Optimal TTF1 staining of the thyroid gland using the rmAb clone SP141 (Ventana, RTU) optimally calibrated with HIER in an alkaline buffer (CC1) and performed on the BenchMark Ultra, Ventana. A strong nuclear staining reaction is seen in virtually all follicular epithelial cells. No background staining is seen.

Optimal TTF1 staining of the lung using same protocol as in Fig. 1a. The type II pneumocytes and the basal epithelial cells lining the terminal bronchioles show a strong distinct nuclear staining reaction, whereas the columnar epithelial cells show a moderate nuclear staining reaction. No background staining is seen.

Insufficient TTF1 staining of the thyroid gland using the mAb clone 8G7G3/1 (Ventana, RTU) with HIER in an alkaline buffer (CC1) and performed on the BenchMark Ultra, Ventana. A moderate nuclear staining reaction is seen in the majority of follicular epithelial cells - same field as in Fig. 1a. Also compare with Figs. 2b, 3b and 4b - same protocol.

Insufficient TTF1 staining of the lung using same protocol as in Fig. 1b. The type II pneumocytes and the basal epithelial cells lining the terminal bronchioles show only a weak to moderate positive nuclear staining reaction and no reaction is seen in the columnar epithelial cells - same field as in Fig. 2a.

THE / RI

Lung tumours: Antibodies, protocols and controls

Primary antibody with a too low sensitivity.

Fig. 3a
Optimal TTF1 staining of the lung adenocarcinoma no. 7 (high level expression of TTF1) using same protocol as in Figs. 1a & 2a. Virtually all the neoplastic cells show a strong and distinct nuclear staining reaction. No background staining is seen.

Fig. 4a
Optimal TTF1 staining of the lung adenocarcinoma no. 4 using same protocol as in Figs. 1a, 2a & 3a. Tumour (right side) with adjacent normal lung tissue. Virtually all the neoplastic cells show a moderate to strong nuclear staining reaction. Strong reaction is also seen in all type II pneumocytes. No background staining is seen.

Fig. 3b
Insufficient TTF1 staining of the lung adenocarcinoma no. 7
using same protocol as in Figs. 1b & 2b. Despite a high level of
TTF1 expression of the neoplastic cells only a moderate nuclear
staining reaction is seen – same field as in Fig. 3a.

Fig. 4b
Insufficient TTF1 staining of the lung adenocarcinoma no. 4
using same protocol as in Figs. 1b, 2b & 3b. Despite a
moderate positive staining reaction in the majority of type II
pneumocytes - both in the normal tissue and within the
tumour tissue - virtually all neoplastic cells are negative same field as in Fig. 4a.

Primary
antibody with
a too low
concentration

Fig. 5a.

Optimal TTF1 staining of the lung adenocarcinoma no. 4 using mAb clone SPT24 diluted 1:25 with an incubation time of 32 min, HIER in CC1 for 64 min and performed at the BechMark Ultra instrument (Ventana), using the UltraView (2-step multimer) detection system. Virtually all the neoplastic cells show a moderate to strong nuclear staining reaction. Compare with Fig 5b.

Fig. 5b.

Insufficient TTF1 staining of the lung adenocarcinoma no. 4. Same protocol as in Fig 5a. but with the use of **mAb clone SPT24 diluted 1:200**.

The lower concentration of the primary Ab results in a negative staining reaction of virtually all neoplastic cells – same field as in Fig. 5a.

Fig. 6a.

Optimal TTF1 staining of the lung adenocarcinoma no. 4 using mAb clone SPT24 diluted 1:50 with an incubation time of 20 min, HIER in TRS pH 9 for 30 min and performed at the OMNIS instrument (Dako), using the EnVision FLEX (2-step polymer) detection system. Virtually all the neoplastic cells show a moderate to strong nuclear staining reaction.

Fig. 6b.

Insufficient TTF1 staining of the lung adenocarcinoma no. 4. Same protocol as in Fig 6a. but with the use of mAb clone SPT24 diluted 1:600.

The lower concentration of the primary Ab results in a negative staining reaction of virtually all neoplastic cells – same field as in Fig. 6a.

p63 / RUN 41 2014

Pass: 70 %

	JK JK J	E0505050505050505050505050	KOKOKOKOK	OKOKOKOKO	KOKOKOKOKOKO	KOKOKOKOK	exexexexe	Kokokokoko				
	Table 1. Antibodies and assessment marks for p63, run 41											
Concentrated antibodies	n	Vendor	Optimal	Good	Borderline	Poor	Suff. ¹	Suff. OPS ²				
	38 14 6 5 3 2	BioCare Medical Dako ImmunoLogic Zeta Corporation Santa Cruz Zytomed Systems										
mAb clone 4A4	1 1 1 1 1 1	BioLogo BioGenex BioSite Bio SB Minarini NeoMarkers Thermo Scientific	21	25	27	2	61 %	67 %				
mAb clone DAK-p63	26	Dako	13	9	4	0	85 %	95 %				
mAb clone 7JUL	14	Leica/Novocastra	0	0	10	4	0 %					
rmAb clone EP174	1	Bio SB	0	0	1	0	-	-				
mAb clone SFI-6	1	DCS Immunoline	0	0	0	1	-	-				
Ab	1	Unknown	0	0	1	0	-	-				
Ready-To-Use Abs							THE RESERVE OF STREET					
mAb clone 4A4 790-4509	74	Ventana	37	25	11	1	84 %	87 %				
mAb clone DAK-p63 IR662	36	Dako	24	9	3	0	92 %	92 %				
mAb clone 4A4 PM163	3	BioCare	0	2	1	0	-	-				
mAb clone 7JUL PA0103	2	Leica/Novocastra	0	0	2	0	-	-				
mAb clone 4A4 AM418	1	BioGenex	0	0	1	0	-	-				
mAb clone 4A4 PDM136	1	DBS	0	0	0	1	-	-				
mAb clone 4A4 MAD- 000479QD	1	Master Diagnostica SL	0	1	0	0	-	-				
Total	236		95	71	61	9	-					
Proportion			40 %	30 %	26 %	4 %	70 %					

1:50 - 1:300

or RTU

p63 / RUN 41 2014

Recommendable clones	Retrieval	Dilution range
mAb 4A4	HIER, High pH	1:50 - 1:600 or RTU

HIER, High pH

Table 3. Proportion of optimal results for p63 using concentrated antibodies on the 3 main IHC systems*

Turio of the post of the production of the produ							
Concentrated	Da	ko	Ver	ntana	Leica		
antibodies	Autostainer L	ink / Classic	BenchMar	k XT / Ultra	Bond III	/ Max	
	TRS pH 9.0	TRS pH 6.1	CC1 pH 8.5	CC2 pH 6.0	ER2 pH 9.0	ER1 pH 6.0	
mAb clone 4A4	2/17 (12%)**	-	14/26 (54%)	-	2/11 (18%)	0/1	
mAb clone DAK-p63	1/9 (11%)	0/1	9/10 (90%)	- /	-	<i>_</i>	

^{*} Antibody concentration applied as listed above, HIER buffers and detection kits used as recommended by the vendors of the respective platforms.

mAb DAK-p63

^{** (}number of optimal results/number of laboratories using this buffer)

p63 / RUN 41 2014

Controls

Positive: Tonsil or prostate.

- * Basal cells of prostate glands and squamous epithelial cells of tonsil must show a moderate to strong nuclear staining reaction.
- In the tonsil scattered lymphocytes must show a weak to moderate nuclear staining reaction.

Primary antibody with a too low sensitivity.

Fig. 1a
Optimal p63 staining of the esophagus using the mAb
clone DAK-p63 (Dako RTU) with HIER in an alkaline buffer
(TRS pH 9.0, Dako) and performed on the Dako
Autostainer. A strong nuclear staining reaction is seen in
the majority of the squamous epithelial cells in the
esophagus. No background staining is seen. Same
protocol used in Figs. 1a - 4a.

p63 / RUN 41 2014

Fig. 1b
Insufficient p63 staining of the esophagus using the mAb clone 7JUL (Leica/Novocastra, 1:100) with HIER in an alkaline buffer (BERS2, Bond) and performed on the Bond III, Leica. A moderate nuclear staining reaction is seen in the majority of the squamous epithelial cells in the esophagus. Compare with Fig. 1a – same field. Also compare with Figs. 2b, 3b and 4b – same protocol.

Fig. 2a
Optimal p63 staining of the tonsil using the same protocol
as in Fig. 1a. A moderate to strong, distinct nuclear
staining is seen in virtually all the squamous epithelial
cells in the tonsil. In addition to the epithelial staining a
weak but distinct nuclear reaction is present in scattered
lymphocytes in the tonsil.

Fig. 2b
Insufficient p63 staining of the tonsil using the same protocol as in Fig. 1b. A weak to moderate, distinct nuclear staining is seen in the majority of the squamous epithelial cells in the tonsil. But in the insufficient protocol no staining is seen in lymphocytes. Compare with Fig. 2a. - same field.

Primary antibody with a too low sensitivity.

Fig. 3a
Optimal p63 staining in the prostate hyperplasia using the same protocol as in Figs. 1a & 2a. Virtually all the basal cells show a moderate to strong distinct nuclear staining reaction. No background staining is seen.

Fig. 3b
Insufficient p63 staining in the prostate hyperplasia using the same protocol as in Figs. 1b & 2b. Virtually all basal cells in the prostate hyperplasia are negative. Compare with Fig. 3a – same field.

Fig. 4a
Optimal p63 staining of the lung squamous cell carcinoma using the same protocol as in Figs. 1a, 2a & 3a. Virtually all the neoplastic cells show a moderate to strong nuclear staining reaction. No background staining is seen.

Insufficient P63 staining of the lung squamous cell carcinoma using the same protocol as in Figs. 1b, 2b & 3b. Only faint nuclear staining is seen and only in a minor fraction of the neoplastic cells. Compare with Fig. 4a – same field.

p63 / RUN 41 2014

p63 / RUN 41 2014

Lung tumours: Antibodies, protocols and controls

Fig. 5a
Optimal p63 staining of the prostate hyperplasia using the mAb clone 4A4 (Ventana, RTU) with HIER in CC1 (Ventana) for 64 min. Moderate to strong nuclear reaction is seen in virtually all basal cells. Efficient HIER pretreatment is essential to optimal P63 staining. Compare with Fig. 5b.

Fig. 5b
Insufficient p63 staining in the prostate hyperplasia using the mAb clone 4A4 (Ventana, RTU) in the same protocol as in Fig. 5a, except for the reduction in HIER pretreatment to 24 min compared to the 64 min i Fig 5a. Consequenctly a dramatic reduction in staining intensity is seen making the identification of the basal cell difficult. Compare with Fig. 5a – same field.

Insufficient HIER.

p63, 4A4 - OptiView (3-step) - Various HIER time Nordicc

CC1_48_100°C

CC1_64_100°C

CC1_92_100°C

p63, 4A4 - UltraView (2-step) - Various HIER time Nordicc

p63, 4A4 OptiView (3-step) vs UltraView (2-step) Nortice

OptiView - HIER CC1_48_100

UltraView - HIER CC1_52_100

140

105

70

35

p40 / RUN 44 2015

Pass: 56 %

10.010	ALC: 1	CHAPTER TO THE POST OF THE BUSINESS AND			*************	020202020		ESESESES
Table 1. Antibodies and assessment marks for p40, run 44								
Concentrated antibodies	n	Vendor	Optimal	Good	Borderline	Poor	Suff. ¹	Suff. OPS ²
mAb clone BC28	49 3 1	Biocare Zytomed Nordic Biosite	26	17	10	٥	81%	86%
rmAb clone ZR8	12 1	Immunologic Zeta Corporation	3	6	4	0	69%	80%
pAb AC13030	16	Biocare	0	3	11	2	19%	
pAb PC373	9	Calbiochem, Merck	0	2	7	0	22%	-
pAb RP163	5 1 1	Diagnostic Biosystems Medac diagnostica ITK DIAGNOSTICS BV	0	2	4	1	29%	-
pAb ab99513 *	4	Abcam	0	0	4	0	-	-
pAb PDR 055	1	Diagnostic Biosystems ITK DIAGNOSTICS BV	0	1	0	1	-	-
pAb RBK054	2	Zytomed	0	1	1	0	-	-
pAb ab166857	1	Abcam	0	0	0	1	-	-
pAb ab167612	1	Abcam	0	0	0	1	-	-
pAb BP4206	1	ID Labs	0	1	0	0	-	-
pAb ILP-3726	1	Immunologic	0	0	1	0	-	-
pAb Unknown	1	Unknown	0	0	1	0	-	-
Ready To Use antibodies						THE PERSON NAMED IN COLUMN TWO		
mAb clone BC28 API 3066	6	Biocare	3	2	1	0	83%	100%
mAb clone BC28 790-4950	2	Ventana	1	1	0	0	-	-
pAb API 3030	3	Biocare	0	2	1	0	-	-
pAb RAB-066	3	Maixin	0	1	2	0	-	-
pAb PDR 055	2	ITK DIAGNOSTICS BV	0	0	2	0	-	-
mAb MAD-000623QD	2	Master Diagnostica	0	0	2	0	-	-
Total	129		33	39	51	6	-	
Proportion			26%	30%	40%	4%	56%	

p40 / RUN 44 2015

Recommendable clones

Retrieval Dilution range

mAb BC28

HIER, High pH 1:25 - 1:100 or RTU

mAb ZR8

HIER, High pH

1:100 - 1:800

Table 3. Proportion of optimal results for p40 for the most commonly used antibody as concentrate on the 3 main IHC systems*

Dako Ventana Leica Concentrated antibodies **Autostainer Link / Classic** BenchMark XT / Ultra Bond III / Max TRS pH 9.0 TRS pH 6.1 CC1 pH 8.5 CC2 pH 6.0 ER2 pH 9.0 ER1 pH 6.0 mAb clone 7/15** (47%) 13/18 (72%) 1/3 **BC28**

p40 / RUN 44 2015

Controls

Positive: Placenta (LLOD)

* Cytotrophoblasts must show an at least weak to moderate, distinct nuclear staining reaction.

<u>Positive</u>: Tonsil

* Virtually all squamous epithelial cells must show a moderate to strong, distinct nuclear staining reaction.

Negative: Tonsil

* Lymphocyttes must be negative.

p40 / RUN 44 2015 @ NordiQC Fig. 1a (x200) Optimal p40 staining of the tonsil using the mAb clone BC28 as a concentrate, optimally calibrated, HIER in an alkaline buffer (TRS pH 9.0, Dako), and a 3-step polymer based detection system (FLEX+, Dako). A moderate to strong nuclear staining reaction is seen in the majority of the squamous epithelial cells. No background staining is seen. Same protocol used in Figs. 1a - 4a.

Optimal p40 staining of the placenta using same protocol

as in Fig. 1a. Scattered cytothrophoblastic cells show a

weak to moderate, distinct nuclear staining reaction.

BC28 © NordiQC

3b and 4b, same protocol.

Fig. 1b (x200) Insufficient p40 staining of the tonsil using the mAb clone BC28. The protocol provided an overall too low sensitivity most likely due to a combination of a too low concentration of the primary Ab and use of a 2-step polymer based detection system with a moderate sensitivity (FLEX, Dako)- compare with Fig. 1a (same field). The intensity and proportion of cells demonstrated is reduced. Also compare with Figs. 2b - 4b, same protocol.

Insufficient p40 staining of the placenta using same

protocol as in Fig. 1b. Virtually no staining reaction of

cytothrophoblastsic cells is seen. Also compare with Figs.

Combination of a too low concentration of the primary Ab and use of a less sensitive 2step polymer based detection system!

p40 / RUN 44 2015

Nord OC

Fig. 3a (x200)
Optimal p40 staining of the lung squamous cell carcinoma using same protocol as in Figs. 1a & 2a.Virtually all neoplastic cells show a moderate to strong nuclear staining reaction. No background staining is seen.

© NordiQC

Fig. 3b (x200)
Insufficient p40 staining of the lung squamous cell carcinoma using same protocol as in Figs. 1b & 2b. The intensity and proportion of cells demonstrated is significantly reduced.

Fig. 4a (x400)
Optimal p40 staining of the prostate hyperplasia using same protocol as in Figs. 1a - 3a. The basal cells are distinctively demonstrated as a moderate to strong nuclear staining reaction is observed.

Fig. 4b (x400)
Insufficient p40 staining of the prostate hyperplasia using same protocol as in Figs. 1b – 3b. Only a weak and equivocal nuclear staining reaction in the basal cells is observed.

Combination of a too low concentration of the primary Ab and use of a less sensitive 2-step polymer based detection system!

BC28

BC28

Synaptophysin / RUN 43 2015 Pass: 82 %

Table 1. Antibodies and assessment marks for SYP, run 43								
Concentrated antibodies	n	Vendor	Optimal	Good	Borderline	Poor	Suff.1	Suff. OPS ²
mAb clone 27G12	69 2 1 1	Leica/Novocastra Biocare Monosan Genetech	28	35	6	4	86%	88%
mAb clone BS15	1	Nordic Biosite	1	0	0	0	-	-
mAb clone DAK-SYNAP	12	Dako	7	3	2	0	83%	100%
mAb clone SNP88	7	Biogenex	2	5	0	0	100%	100%
mAb clone SY38*	3	Dako	0	2	1	0	-	-
rmAb clone MRQ-40	5 1	Cell Marque Monosan	3	2	1	0	83%	100%
rmAb clone SP11	10 2 1 1	Thermo/Neomarkers Spring Bioscience Abcam Immunologic	7	4	3	0	79%	83%
pAb 180130	1	Immuno Diagnostics	0	0	1	0	-	-
pAb RB-1461	1	Thermo/Neomarkers	0	0	1	0	-	-
pAb RBK011	1	Zytomed	0	0	0	1	-	-
Ready-To-Use antibodies								
mAb clone 27G12 PA0299	9	Leica/Novocastra	3	3	2	1	67%	100%
mAb clone 27G12 PM371	1	Biocare	0	1	0	0	-	-
mAb clone DAK-SYNAP IR660	38	Dako	11	23	4	0	89%	90%
mAb clone SNP88 AM363-5M	2	Biogenex	0	1	1	0	-	-
mAb clone SY38 IR/IS776*	5	Dako	0	2	2	1	-	-
rmAb MRQ-40 760-4595	31	Ventana/Cell Marque	23	7	1	0	97%	100%
rmAb clone MRQ-40 336R	1	Cell Marque	1	0	0	0	-	-
rmAb clone SP11 790-4407	33	Ventana	9	14	9	1	70%	81%
rmAb clone SP11 KIT-0022	1	Maixin	0	1	0	0	-	-
rmAb clone SP11 MAD-000313QD	2	Master Diagnostica	0	1	1	0	-	-
pAb 336A-78	1	Cell Marque	0	1	0	0	-	-
Total	243		95	105	35	8	-	
Proportion			39%	43%	15%	3%	82%	

*SY38 discontinued from vendor

Synaptophysin / RUN 43 2015

The mAb clones 27G12, BS15, DAK-SYNAP and Snp88 and the rmAb clones SP11 and MRQ-40 could all be used to obtain an optimal staining reaction for SYP

Selected clones	Retrieval	Dilution range
mmAb 27G12	HIER, High pH	1:25 - 1:200 or RTU
mmAb DAK-SYNAP	HIER, High pH	1:50 - 1:100 or RTU
rmAb MRQ-40	HIER, High pH	1:50 - 1:300 or RTU
rmAb SP11	HIER, High pH	1:50 - 1:150 or RTU

Table 3. Proportion of optimal results for SYP for the most commonly used antibody as concentrate on the 3 main IHC systems*

Concentrated antibodies	Dako Autostainer Link / Classic		Vent BenchMark		Leica Bond III / Max		
	TRS pH 9.0	TRS pH 6.1	CC1 pH 8.5	CC2 pH 6.0	ER2 pH 9.0	ER1 pH 6.0	
mAb clone 27G12	6/13** (46%)	0/2	15/28 (54%)	-	4/11 (36%)	0/1	

Synaptophysin / RUN 43 2015

Controls

Positive/Negative: Colon.

- * The axons of the Auerbach's and Meissner's plexus and the endocrine cells of the mucosa should be very strongly positive.
- * The majority of goblet cells in the mucosa must show an at least weak to moderate cytoplasmic staining reaction.
- * No staining must be seen in the smooth muscle cells.

Fig. 1a Optimal SYP staining of the pancreas using the mAb clone 27G12, optimally calibrated, HIER in an alkaline buffer and a 3-step multimer based detection system. Virtually all endocrine islet cells show a strong and distinct cytoplasmic staining reaction and a high signal-to-noise ratio is observed. Also compare with Figs. 2a - 5a - same protocol.

Fig. 1b SYP staining of the pancreas using an insufficient protocol giving a too low sensitivity - same field as in Fig. 1a. The protocol was based on the rmAb clone SP11, HIER in an alkaline buffer. However the combination of a too low concentration of the primary Ab and use of a less sensitive 2-step multimer based detection system was less successful. The intensity of the endocrine cells is significantly reduced compared to the level expected and obtained in Fig. 1a. Also compare with Figs. 2b - 4b -

Fig. 2a Optimal SYP staining of the colon using same protocol as

Insufficient SYP staining of the colon using same protocol

The combination of a too low concentration of the primary Ab and use of a less sensitive 2step multimer based detection system results in insufficient

staining!

Fig. 3a Optimal SYP staining of the intestinal neuroendocrine carcinoma using same protocol as in Figs. 1a. and 2a. Virtually all the neoplastic cells show a strong and distinct staining reaction. No background staining is seen.

Fig. 3b Staining for SYP of the intestinal neuroendocrine carcinoma using same insufficient protocol as in Figs. 1b and 2b - same field as in Fig. 3a. The vast majority of the neoplastic cells are demonstrated. However also compare with Fig. 4b - same protocol.

Optimal SYP staining of the SCLC using same protocol as

Insufficient SYP staining of the SCLC using same protocol

The combinati on of a too low concentrat ion of the primary Ab and use of a less sensitive 2-step multimer based detection system results in insufficient staining!

Aberrant staining

Fig. 5b Staining for SYP of the colon adenocarcinoma - same field as in Fig. 5a. An aberrant granular cytoplasmic staining reaction is seen diffusely in the neoplastic cells. This pattern was occasionally observed, when the mAb clone 27G12 was applied on the Dako Autostainer and Biocare Intellipath platform with otherwise optimal settings based on HIER in an alkaline buffer and a 3-step polymer based detection system. The aberrant staining pattern for clone 27G12 was not observed on the BenchMark platform and different washing conditions and efficiency might cause the different staining pattern. As the staining reaction was not consistent on e.g. the Dako platform, a lot-to-lot variation might be a cofactor. If the aberrant cytoplasmic staining reaction was observed in > 30% of the neoplastic cells, the result was evaluated as borderline.

lu-ALK / RUN 45 2015

Pass: 67 %

Table 1. Antibodies and assessment marks for lu-ALK, run 45									
Concentrated antibodies	n	Vendor	Optimal	Good	Borderline	Poor	Suff.1	Suff. OPS ²	
mAb clone 5A4	46 3 2 1 1	Leica/Novocastra Thermo/NeoMarkers Monosan Abcam Biocare Zytomed	24	16	13	1	74%	81%	
mAb clone ALK1	8	Dako	0	0	3	5	0%	-	
mAb clone OTI1A4	5	ORIGENE	4	1	0	0	100%	100%	
rmAb clone D5F3	21 1	Cell Signaling PrimeBioMed	18	2	1	1	91%	95%	
rmAb clone SP8	2	Thermo/NeoMarkers	0	0	1	1		A Committee of the Comm	
Ready-To-Use antibodies									
mAb clone 5A4 PA0306	3	Leica/Novocatra	0	1	2	0	-	-	
mAb clone 5A4 API3041	1	Biocare	1	0	0	0	-	-	
mAb clone 5A4 MAB-0281	1	Maixin	1	0	0	o	-	-	
mAb 5A4 MAD-0017200D	1	Master Diagnostica	0	0	0	1			
mAb ALK1 IR641	15	Dako	0	0	4	11	0%		
mAb clone ALK1 790/800-2918	10	Ventana	0	1	6	3	10%		
mAb clone ALK1 204M-18	1	Cell Marque	0	0	0	1			
mAb clone ALK1 GA641	1	Dako	0	0	0	1	-	-	
rmAb clone D5F3 790-4794	47	Ventana	41	4	2	0	96%	96%	
rmAb clone D5F3 790-4843 (CDx assay)	4	Ventana	3	0	1	0	-	-	
Unknown	1	Unknown	1	0	0	0	-	-	
Total	176		93	25	33	25	-		
Proportion			53%	14%	19%	14%	67%		

lu-ALK / RUN 45 2015

Recommendable clones

mAb 5A4

rmAb D5F3

mAb OTI1A4

Retrieval

HIER, High pH

HIER, High pH

HIER, High pH

Dilution range

1:10 - 1:50

or RTU

1:50 - 1:250

or RTU

1:50 - 1:1000

Table 3. Proportion of optimal results for lu-ALK for the most commonly used antibodies as concentrate on the 3 main IHC systems*

no o manii arro o oceanii										
Concentrated antibodies	Dal Autostainer L		Vent BenchMark		Leica Bond III / Max					
	TRS pH 9.0	TRS pH 6.1	CC1 pH 8.5	CC2 pH 6.0	ER2 pH 9.0	ER1 pH 6.0				
mAb clone 5A4	6/9** (67%)	-	4/17 (24%)	-	6/6 (100%)	1/1				
rmAb clone D5F3	7/8 (88%)	0/1	1/2	-	4/4	-				

^{*} Antibody concentration applied as listed above, HIER buffers and detection kits used as provided by the vendors of the respective systems.

^{** (}number of optimal results/number of laboratories using this buffer)

lu-ALK / RUN 45 2015

Controls

Positive: ALCL and lung adenocarcinoma with FISH verified ALK rearrangements and normal appendix.

* A weak to strong granular cytoplasmic staining reaction should be seen in the ganglion cells in appendix.

Negative: Lung cancer without ALK rearrangements

Fig. 1a
Optimal ALK staining of the ALCL with ALK
rearrangement using the mAb clone OTI1A4 optimally
calibrated, HIER in TRS High pH 9 (Dako), a 3-step
polymer based detection system and performed on
Omnis, Dako.

The neoplastic cells show an intense nuclear and cytoplasmic staining reaction. Despite the intense staining reaction, a high signal-to-noise ratio is provided and no background staining is seen.

Also compare with Figs. 2a - 6a, same protocol.

ALK staining of the ALCL with ALK rearrangement using an insufficient protocol providing a too low sensitivity for the demonstration of ALK rearrangement in lung adenocarcinoma - same field as in Fig. 1a.

The protocol was based on the mAb clone ALK1, HIER in an alkaline buffer, a 3-step polymer based detection system and performed on the Autostainer Link 48, Dako. The neoplastic cells of the ALCL are demonstrated, however also compare with Figs. 2b – 5b, same protocol.

Fig. 2a
Optimal ALK staining of the lung adenocarcinoma with
ALK rearrangement using same protocol as in Fig. 1a.
The majority of the neoplastic cells show a moderate to
strong granular cytoplasmic staining reaction.
No background staining is seen.

Fig. 2b

Insufficient ALK staining of the lung adenocarcinoma with ALK rearrangement using same protocol as in Fig. 1b - same field as in Fig. 2a.

Only scattered neoplastic cells show a faint cytoplasmic staining reaction, while the vast majority is negative.

Less
successful
primary
antibody:
mAb clone
ALK1

Fig. 4a

Optimal ALK staining of the appendix using same

staining reaction, while the axons show a weak to

moderate staining reaction.

protocol as in Figs. 1a - 3a. The ganglion cells of the

myenteric plexus show a moderate, distinct cytoplasmic

Lung tumours: Antibodies, protocols and controls

Less successful primary antibody: mAb clone ALK1

Fig. 4b Insufficient ALK staining of the appendix using same protocol as in Figs. 1b - 3b. - same field as in Fig. 4a. The ganglion cells and axons are unstained.

WT1 / RUN 43 2015

Pass: 81 %

	K0-0×	8787878767676767676767676	566666	oroxoxox	52525252525	60000000	Kokokoko	CONORONOMO
Table 1. Antibodies and	asse	essment marks for WT	1, run 43	1				
Concentrated antibodies	n	Vendor	Optimal	Good	Borderline	Poor	Suff. ¹	Suff. OPS ²
	70 7 2	Dako Cell Marque Immunologic						
mmAb clone 6F-H2	1 1	BioSB Genemed Novous	23	41	17	3 (76%	81%
	1	Thermo Fisher Zeta						
mmAb clone WT49	20 1	Leica/Novocastra Monosan	9	8	2	2	81%	88%
rmAb clone EP122	1	Epitomics	0	1	0	0	-	-
pAb, C-19	1	Santa Cruz	0	0	1	0	-	-
pAb, RB-9267-P1	1	Thermo Fisher	0	0	0	1	-	-
Ready-To-Use antibodies								
mmAb clone 6F-H2 IR055/IS055	51	Dako	40	8	2	1	94%	100%
mmAb clone 6F-H2 760-4397	45	Ventana/Cell Marque	4	33	5	3	82%	97%
mmAb clone 6F-H2 348M-98	3	Cell Marque	0	2	1	0	-	-
mmAb clone 6F-H2 PM258	1	BioCare	0	0	1	0	-	-
mmAb clone 6F-H2 MAD-005671QD	1	Master Diagnostica	0	1	0	0	-	-
mmAb clone 6F-H2 MON-RTU1210	1	Monosan	0	0	1	0	-	-
mmAb clone WT49 PA0562	8	Leica/Novocastra	5	2	1	0	88%	100%
mmAb clone MX012 MAB-0678	1	Maixin	0	1	0	0	-	-
rmAb clone EP122 AN828-5M	1	Biogenex	1	0	0	0	-	-
Total	220		82	97	31	10	-	
Proportion			37%	44%	14%	5%	81%	

or RTU

WT1 / RUN 43 2015

Recommendable clones	Retrieval	Dilution range
mAb 6H-F2	HIER, High pH	1:30 - 1:400 or RTU
mAb WT49	HIER, High pH	1:10 - 1:60 or RTU
mAb 6H-F2	HIFR. High pH + Prot.	1:200 - 1:250

Table 3. Proport	Table 3. Proportion of optimal results for WT1 using concentrated antibodies on the 3 main IHC systems*										
Concentrated antibodies	Dako Autostainer Lini Omni	k / Classic /	Ве	Ventana nchMark XT / Ult	Leica Bond III / Max						
	TRS pH 9.0	TRS pH 6.1	CC1 pH 8.5	CC1 pH 8.5 + Protease 3	CC2 pH 6.0	ER2 pH 9.0	ER1 pH 6.0				
mAb clone 6F-H2	9/13 (69%)**	-	3/38 (8%)	2/4	0/1	4/6 (67%)	-				
mAb clone WT49	3/6 (50%)	-	2/4	-	-	4/7 (57%)	-				

A cytoplasmic reaction in a variety of cells, e.g., endothelial cells, smooth muscle cells and plasma cells was expected and accepted for the mAb clone 6F-H2.

WT1 / RUN 43 2015

Controls

Positive: Fallopian tube

* Epithelial cells must show an as strong as possible nuclear reaction with only a minimal cytoplasmic reaction.

A cytoplasmic reaction in a variety of cells, e.g., endothelial cells, smooth muscle cells and plasma cells was expected and accepted for the mAb clone 6F-H2.

WT1 / RUN 43 2015

Controls

Positive: Kidney

- * A moderate to strong nuclear staining must be seen in the parietal epithelial cells and podocytes of the Bowman capsule.
- * The epithelial cells of the tubules should be negative

WT49

WT1, 6F-H2 and retrieval protocols

C Data from Workshop 2014

HIER (CC1_32_100)

HIER + Prot (CC1_32_100/P3_4)

HIER (CC1_32_100)

HIER + Prot (CC1_32_100/P3_4)

6F-H2 (HIER)

6F-H2 (HIER+P) or WT49 (HIER)

Positive: Fallopian tube

* Epithelial cells must show an as strong as possible nuclear reaction with only a minimal cytoplasmic reaction.

6F-H2 (HIER+P) or WT49 (HIER)

Positive: Kidney

- A moderate to strong nuclear staining must be seen in the parietal epithelial cells and podocytes of the Bowman capsule.
- * The epithelial cells of the tubules should be negative

6F-H2 (HIER+P) or WT49 (HIER)

Optimizing protocols

Epitope retrieval "Test Battery"

BenchMark

No	Method									
	No retrieval									
2	Protease 1 (36°C)	8 min								
3	CC2, pH6 (91°C)	32 min								
4	CC1, pH8,5 (100°C)	32 min								
5	CC1, pH8,5 (100°C)	48 min								
6	CC1, pH8,5 (100°C)	32 min >>>>	Protease 3 (36°C)	4 min						
7	Protease 3 (36°C)	4 min >>>>	CC1, pH8,5 (100°C)	32 min						
8	MW/TRS pH6.1	15 min	Offline							
9	Pepsin (0,4%/37°C)	20 min	Offline							
10	MW/Citrate pH2	10 min	Offline							

CC2: Citrate based buffer, pH6 CC1: Tris-EDTA based buffer pH8,5

WT1 / RUN 43 2015

Lung tumours: Antibodies, protocols and controls

Optimal WT1 staining of the Fallopian tube using the mmAb clone WT49 (Leica) diluted 1:10 and with an incubation time of 25 min. after HIER in an alkaline buffer (BERS2, Leica) using a 3-step polymer system (Refine, Bond, Leica) and performed on the Bond III. A strong, distinct nuclear staining of virtually all epithelial cells and muscle cells is seen (same protocol used in Figs. 1a. -4a.). Compare with Fig. 1b.

Insufficient WT1 staining of the Fallopian tube using the mmAb clone WT49 (Leica) diluted 1:25 and with an incubation time of 15 min. after HIER in an alkaline buffer (BERS2, Leica) using a 3-step polymer system (Refine, Bond, Leica) and performed on the Bond Max. The combination of a low titer and short incubation time results in insufficient staining. Only a moderate nuclear staining of the epithelial cells and muscle cells is seen.

Optimal WT1 staining in the serous ovarian carcinoma

Fig. 4b Insufficient WT1 staining in the serous ovarian carcinoma The combination of a low concentration of the primary Ab and short incubation time results in insufficient staining.

New WT-1 Ab, clone EP122 - kidney

EP122 / OMNIS

EP122 / BMU

New WT-1 Ab, clone EP122 - testis

EP122 / OMNIS

EP122 / BMU

6F-H2 / BMU

CEA / RUN 47 2016

Pass: 42 %

Table 1 Autibadies	- L-	seesement marks for Ci	Α	17	KOKOKOKOKO	CHURUKUK	SESTORE	KORUKUKUKU
	ana a	ssessment marks for CE	:A, run 4	• /			Suff.1	Suff.
Concentrated Antibodies	n	Vendor	Optimal	Good	Borderline	Poor	Surr.	OPS ²
mAb clone 12-140-10	3	Leica/Novocastra	0	0	0	3		
mAb clone CEA31	9	Cell Marque BioSB	6	0	3	1	67%	75%
mAb COL-1	6 5 5 2 1	Thermo/Neomarkers Invitrogen/Zymed Biocare Immunologic Zytomed GeneTex	11	7	2	0	90%	94%
mAb II-7	85	Dako/Agilent	2	19	60	4	25%	58%
mAb CFA88	2	BioGenex	0	0	1	1	The state of the s	A CONTRACTOR OF THE PARTY OF TH
mAb PARLAM 4	1	Monosan	0	0	1	0	-	-
mAb BS33	1	Nordic Biosite	0	0	1	0		
Ready-To-Use Antibodies								
mAb clone CEA31 760-4594	53	Ventana/Cell Marque	22	26	5	0	91%	100%
mAb clone CEA31 236M	4	Cell Marque	1	2	1	0	-	
mAb clone COL-1 MAD-002095QD	2	Master Diagnostica	0	0	1	1	-	-
mAb clone COL-1 PM058	1	Biocare	0	0	1	0	-	-
mAb clone COL-1 Kit-0008	1	Maixin	1	0	0	0	-	-
mAb clone II-7 IR/IS622/GA622	47	Dako/Agilent	0	6	40	1	13%	
mAb clone II-7 PA0004	12	Leica	0	5	6	1	42%	
mAb clone TF3H8-1 760-2507	13	Ventana/Roche	0	0	0	13	0%	
Total	255		43	65	122	25		
Proportion			17%	25%	48%	10%	42%	

CEA / RUN 47 2016

Controls

Positive: Appendix.

* The vast majority of the epithelial cells must show a moderate to strong cytoplasmic staining reaction.

Negative: Liver

* No cells must be positive.

CEA / RUN 47 2016

Recommendable clones

Retrieval Dilution range

mAb CEA31

HIER, High pH

1:100 - 1:400 or RTU

mAb COL-1

HIER, High pH

1:100 - 1:400

Table 3. Optimal results for CEA for the three most commonly used concentrated antibodies on the 3 main IHC systems*

Concentrated antibodies	Da Autostainer Li OM	nk / Classic /	Vent BenchMark		Leica Bond III / Max		
	TRS pH 9.0	TRS pH 6.1	CC1 pH 8.5	CC2 pH 6.0	ER2 pH 9.0	ER1 pH 6.0	
mAb clone II-7	1/17** (6%)	0/2	0/35 (0%)	-	1/10 (10%)	0/4 (0%)	
mAb clone COL-1	1/2	-	8/13 (62%)	-	1/1	-	
mAb clone CEA31	3/3	-	3/6 (50%)	-	-	-	

^{*} Antibody concentration applied as listed above, HIER buffers and detection kits used as provided by the vendors of the respective platforms.

^{** (}number of optimal results/number of laboratories using this buffer)

Fig. 1a (x200) Optimal CEA staining of the appendix using the mAb clone CEA31 diluted 1:100 and with an incubation time of 30 min, after HIER in an alkaline buffer (TRS pH 9. Dako). Staining was performed on the Dako Omnis using a 3-step polymer system (EnVision Flex+). A weak to moderate staining reaction is seen in the vast majority of the luminal epithelial cells of the appendix, whereas the glycocalyx show an intense staining reaction.

Also compare with Figs. 2a – 4a, same protocol. No background staining is seen.

Optimal CEA staining of the colon adenocarcinoma with high level CEA expression using same protocol as in Fig. 1a. Virtually all the neoplastic cells show a strong and distinct cytoplasmic staining reaction. Weak background staining in the vicinity of the neoplastic cells, due to diffusion of antigen, is seen and accepted.

Fig. 1b (x200)

Insufficient CEA staining of the appendix using the mAb clone II-7 in a RTU format (Dako GA622) with an incubation time of 25 min. after HIER in an alkaline buffer (TRS pH 9, Dako). Staining was performed on the Dako Omnis using a 3-step polymer system (EnVision Flex+). In spite of very similar protocol settings the "clone II-7"-protocol only demonstrates the glycocalyx distinctively, while the cytoplasmic compartment in the vast majority of epithelial cells is unstained - same field as in Fig. 1a. Also compare with Figs. 2b - 4b, same

CEA staining of the colon adenocarcinoma with high level CEA expression using same insufficient protocol as in Fig. 1b - same field as in Fig. 2a. The intensity of the neoplastic cells demonstrated is reduced compared to the level expected and obtained in Fig. 2a.

Less successful primary antibody: mAb clone II-7

Fig. 3a (x200) Optimal CEA staining of the urothelial carcinoma, tissue core no. 4, using same protocol as in Figs. 1a and 2a. The majority of the neoplastic cells show a strong and distinct staining reaction. No background staining is seen.

Fig. 4a (x200) Optimal CEA staining of the urothelial carcinoma, tissue core no. 5, with low level CEA expression using same protocol as in Figs. 1a - 3a. Focally the neoplastic cells show a moderate to strong and distinct staining reaction. No background staining is seen.

Fig. 3b (x200) Insufficient CEA staining of the urothelial carcinoma, tissue core no. 4, using same protocol as in Figs. 1b and 2b - same field as in Fig. 3a. The proportion and intensity of the neoplastic cells demonstrated is significantly reduced compared to the level expected and obtained in Fig. 3a.

Insufficient CEA staining of the urothelial carcinoma, tissue core no. 5, with low level CEA expression using same protocol as in Figs. 1b - 3b - same field as in Fig.

The neoplastic cells show no staining reaction and a false negative result of the tumour is seen.

Less successful primary antibody: mAb clone II-7

Fig. 5a (x200)

Optimal CEA staining of the appendix using the mAb clone CEA31 diluted 1:400 and with an incubation time of 30 min. after HIER in an alkaline buffer (CC1, Ventana). Staining was performed on the Ventana BenchMark using a 3-step multimer system (OptiView)

A weak to moderate staining reaction is seen in the vast majority of the luminal epithelial cells of the appendix, whereas the glycocalyx show an intense staining reaction. Compare also to Fig. 6a, same protocol.

Fig. 5b (x200)

Insufficient CEA staining of the appendix using the mAb clone CEA31 with similar protocol settings as used in Fig. Only difference was the use of proteolytic pretreatment (Protease 1, Ventana for 8 min.) instead of HIER. Proteolytic pre-treatment results in a drastic reduction in staining intensity. Only the glycocalyx is distinctively demonstrated, while the cytoplasmic compartment of the epithelial cells is unstained - same field as in Fig. 5a. Compare also to Fig. 6b, same protocol.

moderate to strong and distinct staining reaction.

Fig. 6a (x200) Optimal CEA staining of the urothelial carcinoma, tissue core no. 5, with low level CEA expression using same protocol as in Fig 5a. Focally the neoplastic cells show a

Fig. 6b (x200)

Insufficient CEA staining of the urothelial carcinoma, tissue core no. 5, with low level CEA expression using same protocol as in Fig. 5b - same field as in Fig. 6a. The neoplastic cells show no staining reaction and a false negative result in this tumour is seen.

Inappropriate retrieval - use of proteolysis

Inappropriate antibody - NCA and BGP cross reaction

in Figs. 5a and 6a based on the mAb clone CEA31. No

staining reaction is seen in the Kupffer cells, leucocytes

and the bile canaliculi. No background staining is seen.

© NordiQč

Fig. 7b (x200)
Insufficient CEA staining of the liver using the **mAb**clone **TF3H8-1.** Both the Kupffer cells, leucocytes and
bile canaliculi are stained due to a cross reaction of the
Ab to NCA (CEACAM6) and BGP (CEACAM1) – same field
as in Fig. 7a.

Target	High scoring clones*	Low scoring clones*
Napsin A	mmAb: IP64 and MRQ-60	pAb: <mark>760-4446</mark> and <mark>352A-7x</mark>
TTF1	mmAb: SPT24 and SP141	mmAb: <mark>8G7G3/1</mark>
p63	mmAb: DAK-p63 and 4A4	mmAb: <mark>7JUL</mark>
p40	mmAb: BC28 and rmAb: ZR8	Many pAbs
SYP	mmAb: 27G12, rmAb MRQ-40 and DAK-SYNAP	mmAb: <mark>SY38</mark>
lu-ALK	rmAb: D5F3, mmAb: 5A4	mmAb: ALK1
VVT1	mmAb: WT49 and 6F-H2	
CEA	mmAb: CEA31 and COL-1	mmAb: TF3H8-1 and II-7
CGA	pAb: A0430 [§] / IR502 [§] , mmAb: LK2H10	rmAb: SP12, mmAb DAK-A3
Calretinin	rmAb: SP65, pAb 18-0211	rmAb: SP11
Podoplanin	mmAb: D2-40	mmAb: D2-40 #
CD56	rmAb: MRQ-42, mmAb: CD564 and 123C3	mmAb: 123C3 #

[#] Ventana platform § Products discontinued

^{*} on the basis of the assessments in NordiQC

Thank you for your attention.

Coffee.....

Extra material:

Target	High scoring clones*	Low scoring clones*
CGA	pAb: A0430 [§] / <mark>IR502[§], mmAb: LK2H10</mark>	rmAb: SP12, mmAb DAK-A3
Calretinin	rmAb: SP65, pAb 18-0211	rmAb: SP11
Podoplanin	mmAb: <mark>D2-40</mark>	mmAb: D2-40 #
CD56	rmAb: MRQ-42, mmAb: CD564 and 123C3	mmAb: 123C3 #

[#] Ventana platform

Chromogranin A / RUN 46 2016) Pass: 67 %

35-25-55-25-25-25-25-25-25-25-25-25-25-25	55		5555	5555		5858585	88888	25252525
Table 1. Antibodies and	asse	ssment marks for CGA	, run 46				1	
Concentrated antibodies	n	Vendor	Optimal	Good	Borderline	Poor	Suff.1	Suff. OPS ²
mAb clone 5H7	4	Leica/Novocastra	0	0	3	1		
mAb clone DAK-A3	36	Dako/Agilent	0	2	17	17	6%	-
mAb clone LK2H10	22 18 6 3 2 2 1 1 1 1	Thermo/Neomarkers Cell Marque Immulologic Biogenex Millipore Zytomed Abcam A.Menarini Diagnostic Biosystems Europroxima Monosan Unknown	24	31	o	4	93%	98%
mAb clone PHE5	1	Unknown	0	0	1	0		
mAb clones LK2H10+PHE5	5	Thermo/Neomarkers Biocare	3	8	0	0	100%	100%
rmAb cione EP38	1	Epitomics	0	1	0	0	The same of the sa	
rmAb clone SP12	1	Master Diagnostica Thermo/NeoMarkers	0	0	0	2	-	-
pAb A0430*	38	Dako/Agilent	8	17	8	5	66%	-
pAb NB120-17064	1	Novus Biologicals	0	1	0	0		-
pAb RB-9003	1	Thermo/NeoMarkers	0	1	0	0		
Ready-To-Use antibodies								
mAb clone 5H7 PA0430	6	Leica/Novocastra	0	0	2	4		
mAb clone LK2H10 760-2519	69	Ventana/Roche	27	28	6	8	80%	96%
mAb clone EK2H10 E001	3	Linaris	0	3	0	0		
mAb LK2H10 AM126-5M	1	Biogenex	0	0	1	0	-	-
mAb LK2H10 238M-90	1	Cell Marque	1	0	0	0	-	-
mAb clone LK2H10 MAD-000616QD	2	Master Diagnostica	1	1	0	0	-	-
mAb clones LK2H10+PHE5 PM010	2	Biocare	1	1	0	0	-	-
mAb clones LK2H10+PHE5 BSB5345	1	Bio SB	0	1	0	0	-	-
mAb clones LK2H10+PHE5 MAB-0202	1	Maixin	1	0	0	0		
pAb IR502*	2	Dako	0	1	1	0		
Total	242		66	96	39	41	-	
Proportion			27%	40%	16%	17%	67%	

Calretinin / RUN 45 2015

Pass: 73 %

Table	1:	Antiboo	dies and	l assessment	marks	for	CR,	run 4	45

Table 1: Antibodies a	nd a	assessment marks	for CR, r	un 45				
	n	Vendor	Optimal	Good	Borderline	Poor	Suff.1	Suff. OPS ²
mmAb clone 2E7	1	Immunologic	1	0	0	0	-	-
mmAb clone 5A5	21 1	Leica/Novocastra Immunologic	3	10	8	1	59%	56%
mmAb clone CAL6	6 1	Leica/Novocastra Monosan	4	1	0	2	71%	-
mmAb clone DAK- Calret 1	35	Dako	10	13	9	3	66%	87%
rmAb clone SP13	3 1 2	Thermo/Neomarkers Spring Bioscience Cell Marque	1	2	2	1	50%	-
pAb 18-0211	16	Invitrogen/Zymed	2	8	6	0	63%	-
pAb 232A	5	Cell Marque	0	1	2	2	20%	-
pAb 61-0006	1	Genemed	0	1	0	0	-	-
pAb 7699/3H	1	Swant	0	0	0	1	-	-
pAb RBK003	1	Zytomed	0	0	1	0	-	-
Ready-To-Use antibodies								
mmAb clone CAL6 PA0346	8	Leica/Novocastra	2	3	2	1	63%	-
mmAb clone DAK- Calret 1 IS/IR627	38	Dako	9	17	10	2	68%	79%
rmAb SP13 RMA-0524	1	Maixin	1	0	0	0	-	-
rmAb SP13 232R-18	1	Cell Marque	0	1	0	0	-	-
rmAb SP13 MAD- 000315QD	1	Master Diagnostica	0	1	0	0	-	-
rmAb clone SP65 790- 4467	64	Ventana	52	8	2	2	94%	94%
pAb 232A-78	1	Cell Marque	0	1	0	0	-	-
pAb PP092	1	BioCare	0	1	0	0	-	-
Total	210		85	68	42	15	-	
Proportion			41%	32%	20%	7%	73%	

Podoplanin / RUN 36 2012

Pass: 59 %

29.48(675) 45.4575 4575 4575 457	252525	< 0.5 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	4525252525252	222222222	EXECUTE: 0.000	\$2525252527	25252525252	¥52525252525
Table 1. Abs and assessment marks for Podop, run 36								
Concentrated Abs	N	Vendor	Optimal	Good	Borderl.	Poor	Suff. ¹	Suff. OPS ²
mAb clone D2-40	48 3 2 1 1	Dako Signet Biocare Cell Marque Immunologic Zytomed	10	20	22	4	54 %	56 %
mAb clone AB3	1	AngioBio	0	1	0	0	-	-
mAb clone 18H51	1	Acris	0	0	0	1	-	-
rmAb clone EP215	1	Epitomics	0	0	1	0	-	-
Ready-To-Use Abs								
mAb clone D2-40 IS/IR072	15	Dako	11	4	0	0	100 %	100 %
mAb clone D2-40 N1607	3	Dako	0	3	0	0	-	
mAb clone D2-40 760-4395	21	Ventana/Cell Marque	0	8	13	0	38 %	
mAb clone D2-40 322M-17/18	2	Cell Marque	0	1	1	0	-	-
mAb clone D2-40 MON-RTU1092	1	Monosan	0	1	0	0	-	-
mAb clone D2-40 MAD-000402QD	1	Master Diagnostica	0	1	0	0	-	-
Total	102		21	39	37	5	-	
Proportion			21 %	38 %	36 %	5 %	59 %	

¹⁾ Proportion of sufficient stains (optimal or good), 2) Proportion of sufficient stains with optimal protocol settings only, see below.

200

150

CD56 / RUN 37 2013

Pass: 81 %

445655555555	EFERE	R5958585858585858585858585	57575757575757	6252525252	425252525252F	2525252525	252525252555	
Table 1. Abs and assessment marks for CD56, run 37								
Concentrated Abs	N	Vendor	Optimal	Good	Borderl.	Poor	Suff. ¹	Suff. OPS ²
mAb clone 1B6	42 1 1	Novocastra/Leica Linaris Vector Lab.	16	17	10	1	75 %	77 %
mAb clone 123C3	18 4 2 1	Dako Monosan Invitrogen Spring Bioscience	10	10	3	2	80 %	100 %
rmAb clone MRQ-42	21 1	Cell Marque Immunologic	21	1	0	0	100 %	100 %
mAb clone 123C3.D5	18 1	NeoMarkers/Thermo Immunologic	5	6	5	3	58 %	100 %
mAb clone CD564	8 1	Novocastra/Leica Monosan	5	4	0	0	100 %	100 %
mAb clone 56C04	2	NeoMarkers/Thermo	1	1	0	0	-	-
rmAb clone RCD56	1	Zytomed System	0	0	1	0	-	-
Ready-To-Use Abs					/			
mAb clone 123C3, IR628	34	Dako	16	13	3	2	85 %	88 %
rmAb clone MRQ-42 760-4596	16	Ventana	14	2	0	0	100 %	100 %
mAb clone 123C3 , * 790-4465	9	Ventana	2	1	6	0	33 %	
MAb, clone CD564 , PA0191	6	Novocastra/Leica	3	3	0	0	100 %	100 %
mAb, clone 1B6	4	Novocastra/Leica	0	2	0	2	-	-
mAb, clone 123C3.D5, Mon-RTU1049	1	Monosan	0	1	0	0	-	-
mAb clone BC56C04, PM164	2	Biocare	0	2	0	0	-	-
rmAb clone MRQ-42, 156R-97	1	Cell Marque	1	0	0	0	-	-
mAb clone 56C04, MAD- 000218QD	1	Master Diagnostica	1	0	0	0	-	-
Total	196		95	63	28	10	-	-
Proportion			49 %	32 %	14 %	5 %	81 %	-

BenchMark platform,

CEA / RUN 37 2013

Recommendable clones

Retrieval

Dilution range

mAb CEA31

HIER, High pH (CC1)

1:400 or RTU

mAb COL-1

HIER, High pH

1:100 - 1:500

mAb II-7

HIER, High pH

1:30 - 1:320

or RTU *

Table 2. Optimal results for CEA using concentrated antibodies on the 3 main IHC systems*

Concentrated antibodies	Dako Autostainer Link / Classic			tana XT / Ultra	Leica Bond III / Max		
	TRS pH 9.0 TRS pH 6.1		CC1 pH 8.5	CC2 pH 6.0	ER2 pH 9.0	ER1 pH 6.0	
mAb clone	20 % 5/25*	-	0 % 0/35	0 % 0/1	50 % 3/6	0 % 0/2	
mAb clone COL-1	100 % 1/1	-	89 % 8/9	-	100 % 1/1	50 % 1/2	

^{*} Antibody concentration applied as listed above, HIER buffers and detection kits used as provided by the vendors of the respective platforms. ** (number of optimal results/number of laboratories using this buffer)

CEA / RUN 37 2013

Controls

Positive: Appendix.

The vast majority of the epithelial cells must show a moderate to strong cytoplasmic staining reaction.

Negative: Liver

* No cells must be positive.

Also compare with Figs. 2a – 4a, same protocol.

Fig. 2a. Optimal CEA staining of the colon adenocarcinoma, tissue core no. 4 using same protocol as in Fig. 1a. Virtually all the neoplastic cells show a strong and distinct cytoplasmic staining reaction. No background staining is seen.

Fig. 1b. Insufficient CEA staining of the appendix using the mAb clone II-7 with a less successful protocol - insufficient HIER and too diluted Ab. Only the glycocalyx is distinctively demonstrated, while the cytoplasmic compartment of the epithelial cells is unstained same field as in Fig. 1a.

Also compare with Figs. 2b & 3b, same protocol.

Fig. 2b. Insufficient CEA staining of the colon adenocarcinoma, tissue core no. 4 using same protocol as in Fig. 1b. - same field as in Fig. 2a. The proportion and intensity of the neoplastic cells demonstrated is significantly reduced compared to the level expected and obtained in Fig. 2a.

Fig. 3a. Optimal CEA staining of the urothelial carcinoma using same protocol as in Figs. 1a & 2a. Focally the neoplastic cells show a strong and distinct staining reaction.

No background staining is seen.

Fig. 3b. Insufficient CEA staining of the urothelial carcinoma using same protocol as in Figs. 1b & 2b – same field as in Fig. 3a. Only dispersed neoplastic cells show a weak or equivocal staining reaction.

Fig. 4a. Optimal CEA staining of the liver using same protocol as in Figs. 1a - 3a based on the mAb clone CEA31. No staining reaction is seen in the Kupffer cells, leucocytes or bile canaliculi.

Fig. 4b. Insufficient CEA staining of the liver using the mAb clone TF3H8-1. Both the Kupffer cells, leucocytes and bile canaliculi are stained due to a cross reaction of the Ab to NCA (CEACAM6) and BGP (CEACAM1) – same field as in Fig. 4a.