

Optimization of antibodies, selection, protocols and controls Breast tumours

Søren Nielsen Project coordinator & Scheme Manager NordiQC Aalborg University Hospital, Denmark

Breast panel:

- GCDFP-15
- Mammaglobin
- Gata 3
- Smooth MHCM
- ASMA
- (p63)
- E-cadherin
- p120
- ER
- PR
- HER-2

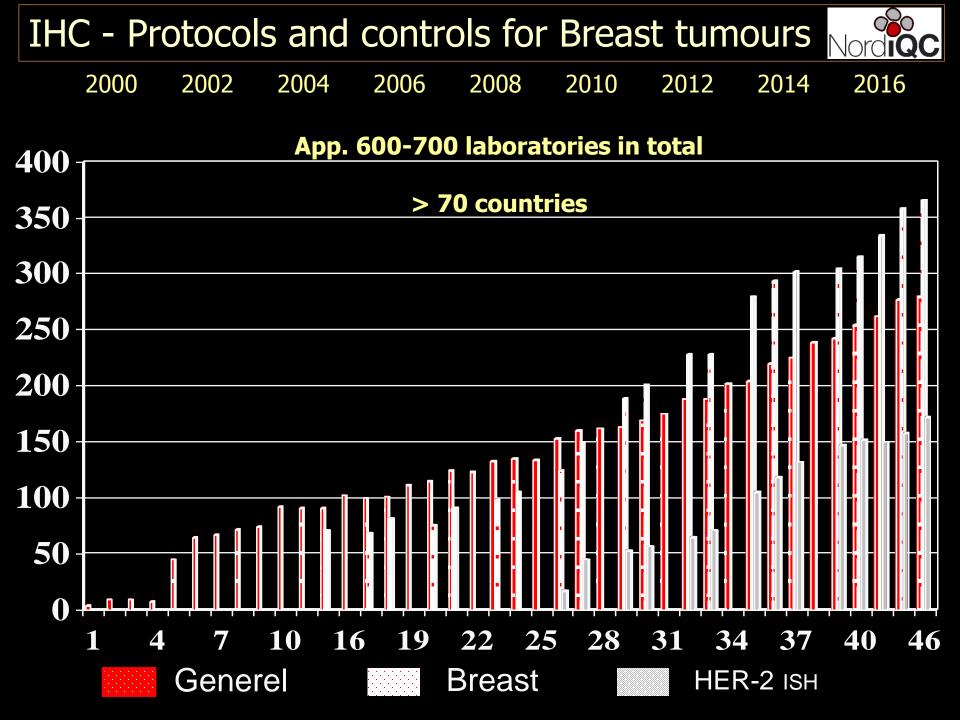
Is it primary breast?

Is it invasive?

Is it lobular or ductal?

Which teraphy?

Breast panel:


- GCDFP-15
- Mammaglobin
- Gata 3
- Smooth MHCM
- ASMA
- (p63)
- E-cadherin
- p120
- ER
- PR
- HER-2

Is it primary breast?

Is it invasive?

Is it lobular or ductal?

Which teraphy?

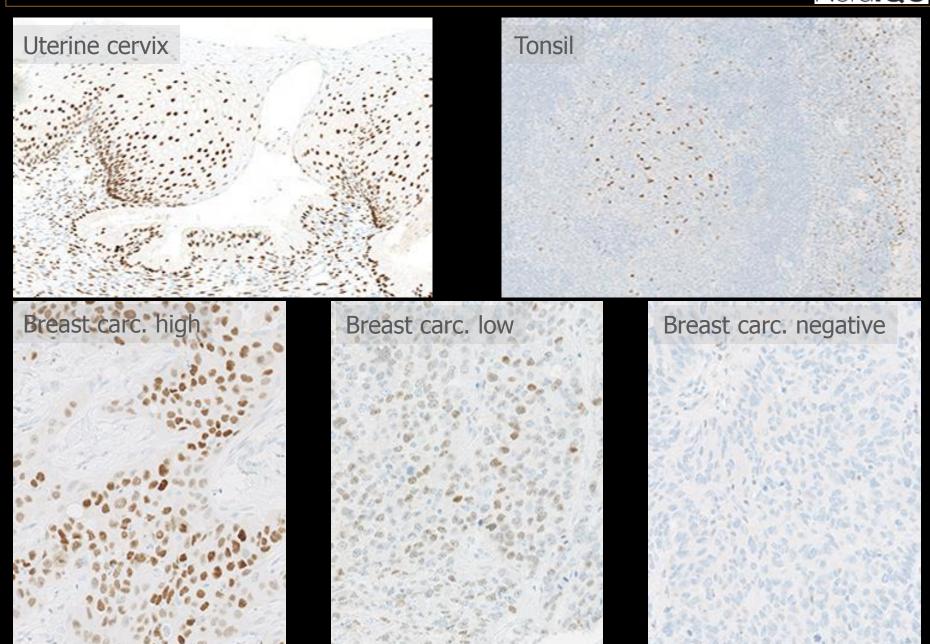
Assessment Run B21 2016 Estrogen receptor (ER)

Material

The slide to be stained for ER comprised:

	Shac to be stanica for Err con		
No.	Tissue	ER-positivity*	ER-intensity*
1.	Uterine cervix	80-90%	Moderate to strong
2.	Tonsil	1-5%	Weak to strong
3.	Breast carcinoma	0%	Negative
4.	Breast carcinoma	40-60%	Weak to moderate
5.	Breast carcinoma	60-80%	Weak to strong
6.	Breast carcinoma	80-100%	Moderate to strong

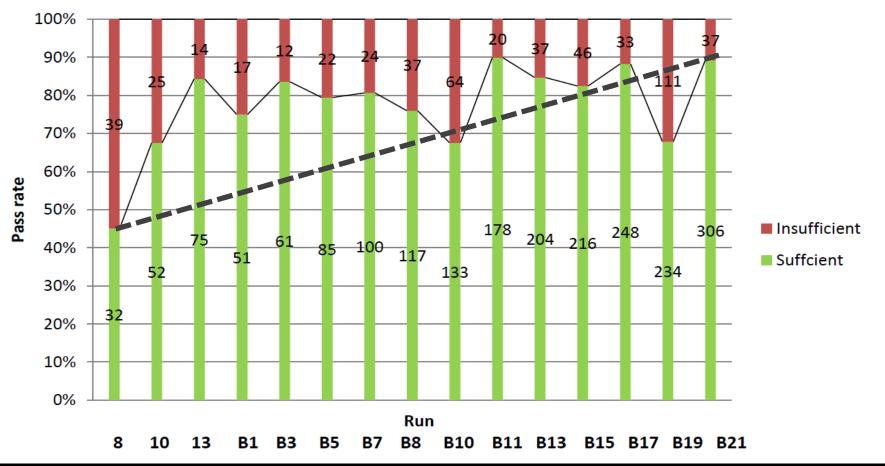
^{*}ER-status and staining pattern as characterized by NordiQC reference laboratories using the rmAb clones EP1 and SP1.


All tissues were fixed in 10% neutral buffered formalin for 24-48 hours and processed according to Yaziji et al. (1).

Focus:

Appropriate technical quality; signal-to-noise, morphology etc

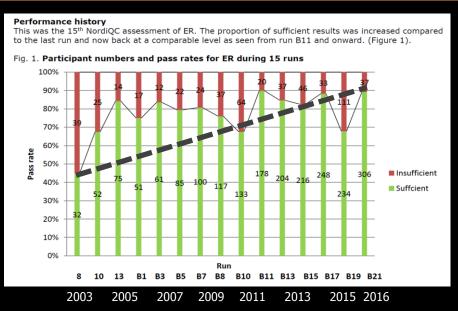
Appropriate analytical sensitivity and specificity — indicated by concordance of ER status in the included tumours to reference



Performance history

This was the 15th NordiQC assessment of ER. The proportion of sufficient results was increased compared to the last run and now back at a comparable level as seen from run B11 and onward. (Figure 1).

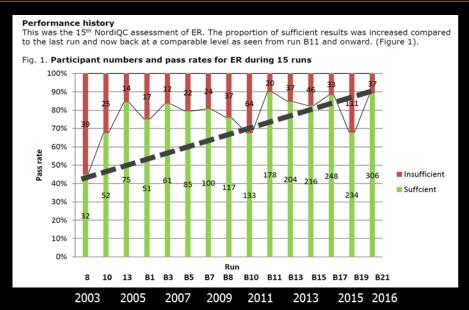
Fig. 1. Participant numbers and pass rates for ER during 15 runs



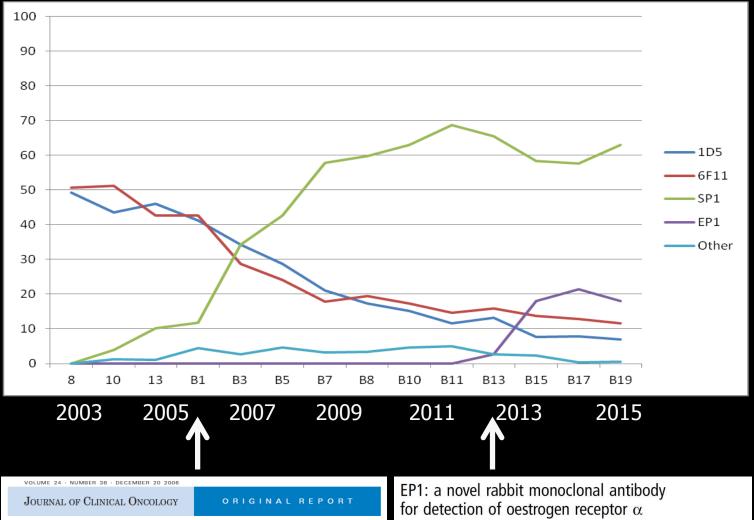
2003 2005 2007 2009 2011 2013 2015 2016

Estrogen receptor;

Pass rate influenced by participation



	New participants	"Old" participants
Run B10, 2004	57% (n=61)	71% (n=134)
Run B15, 2010	70% (n=54)	86% (n=208)
Run B19, 2015	51% (n=86)	73% (n=259)


Estrogen receptor;

Pass rate influenced by protocol harmonization

	2003 B8	2013 B15
Titre range / average titre	1:10-1.000 / 1:125	1:10-400 / 1:90
HIER by in-house buffer	88%	6%
HIER by high pH	70%	94%
Polymer/multimer kit	56%	93%
Fully automated system	6%	59%

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Immunohistochemical Detection Using the New Rabbit

Monoclonal Antibody SP1 of Estrogen Receptor in Breast

Cancer Is Superior to Mouse Monoclonal Antibody 1D5 in Predicting Survival

Maggie C.U. Cheang, Diana O. Treaba, Caroline H. Speers, Ivo A. Olivotto, Chris D. Bajdik, Stephen K. Chia, Lynn C. Goldstein, Karen A. Gelmon, David Huntsman, C. Blake Gilks, Torsten O. Nielsen, and Allen M. Gown Sunil Badve, ¹ I Tudor Vladislav, ¹ Betsy Spaulding, ² Anna Strickland, ² Sylvia Hernandez, ¹ Lisa Bird-Turner, ¹ Cecelia Dodson, ¹ Bjorn Elleby, ² Therese Phillips²

J Clin Pathol 2013;66:1051-1057.

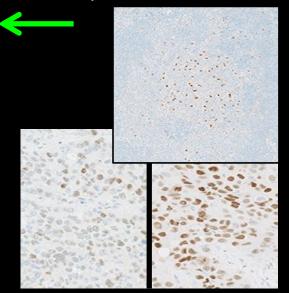
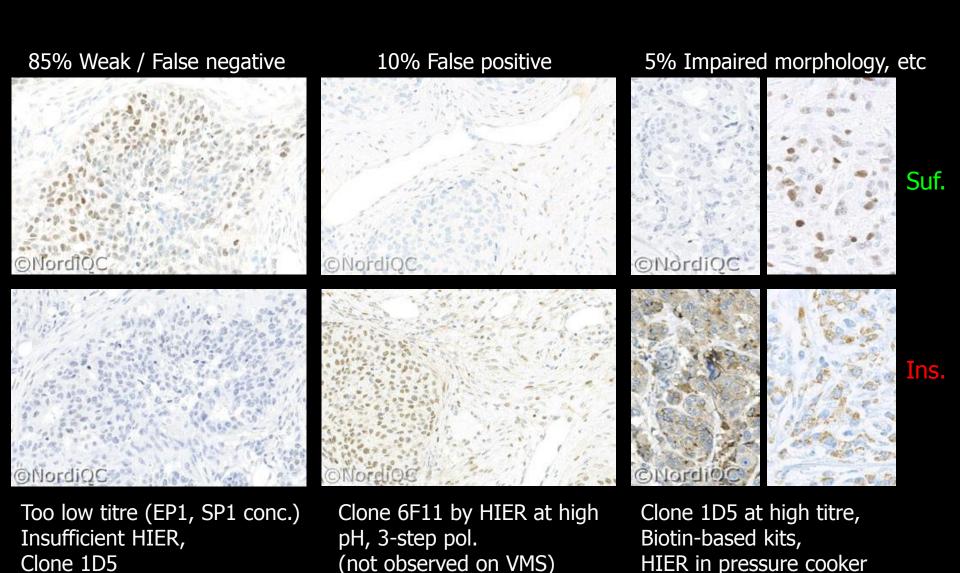


Table 1. Antibodies an	d asse	essment marks for ER, ru	ın B21					
Concentrated antibodies	n	Vendor	Optimal	Good	Borderline	Poor	Suff.1	Suff. OPS ²
mAb clone 1D5	3 1	Dako/Agilent Zytomed	0	1	1	2	-	-
mAb clone 6F11	27	Leica/Novocastra	9	14	4	0	85%	91%
rmAb clone EP1	18 1	Dako/Agilent Cell Marque	8	7	4	0	79%	77%
rmAb clone SP1	28 4 3 2	Thermo/Neomarkers Spring Bioscience Immunologic Cell Marque	28	8	1	0	97%	97%
Ready-To-Use antibodies								
mAb clone 1D5 IR/IS657	7	Dako/Agilent	3	2	1	1	71%	100%
mAb clones 1D5 + ER-2-123 K4071/SK310	2	Dako/Agilent	0	1	1	0	-	-
mAb clone 6F11 PA0151	7	Leica/Novocastra	1	4	2	0	71%	100%
rmAb EP1 IR/IS084	61	Dako/Agilent	28	17	8	8	74%	87%
rmAb clone SP1 790-4324/5	173	Ventana/Roche	129	40	4	0	98%	98%
rmAb clone SP1 MAD-000306QD	2	Master Diagnostica	0	2	0	0	-	-
rmAb clone SP1 ILM30142-R25	1	Immunologic	1	0	0	0	-	-
rmAb clone SP1 KIT-0012	1	Maixin	1	0	0	0	-	-
rmAb clone SP1 RM-9101-R7	1	Thermo/Neomarkers	1	0	0	0	-	-
rmAb + mAb clone cocktail EP1+6F11 IPI3150	1	Biocare	1	0	0	0	-	-
Total	343		210	96	26	11	-	
Proportion			61%	28%	8%	3%	89%	

HIER alk. pH 2- & 3-step kits Carefully calib.

Uterine cervix; all epithelial cells Tonsil; scattered T-cells



¹⁾ Proportion of sufficient stains (optimal or good).

²⁾ Proportion of sufficient stains with optimal protocol settings only, see below.

Estrogen receptor;

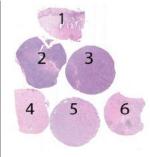
Breast panel: Estrogen Receptor Basic protocol settings for an optimal staining result (NQC)

	Retrieval	Titre	Detection	RTU	Detection
mAb 1D5	HIER High	1:25-50	2- & 3-step	Dako	2- & 3-step
mAb 6F11*	HIER Ci, High	1:50-200	2- & 3-step	Leica	3-step
rmAb EP1	HIER High	1:25-30	2- & 3-step	Dako	2- & <u>3</u> -step
rmAb SP1	HIER High	1:30-100	2- & 3-step	Ventana	<u>2</u> - & 3-step

* Efficient HIER, high conc., 3-step pol. & low stringent washing can give aberrant nuclear staining Not seen on Ventana stainer, rarely on Autostainer and most commonly on Bond stainer.

Use uterine cervix and tonsil to verify level of sensitivity and specificity;

Assessment Run B20 2015 Progesterone Receptor (PR)


Recommended PR protocols

Recommended PR control tissue

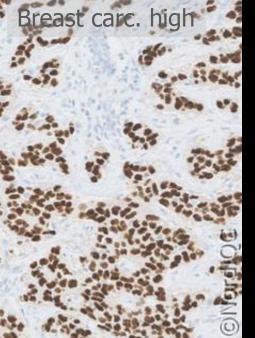
Material

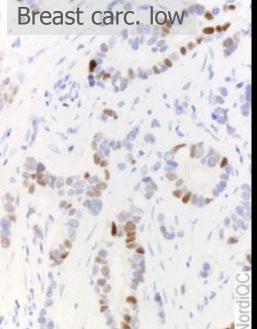
The slide to be stained for PR comprised the following tissues:

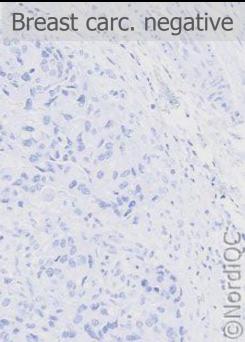
No.	Tissue	PR-positivity*	PR-intensity*
1.	Uterine cervix	80 - 90 %	Moderate to strong
2.	Tonsil	Negative	Negative
3.	Breast carcinoma	Negative	Negative
4.	Breast carcinoma	40 - 60%	Weak to strong
5.	Breast carcinoma	60 - 80%	Weak to strong
6.	Breast carcinoma	80 - 100%	Moderate to strong

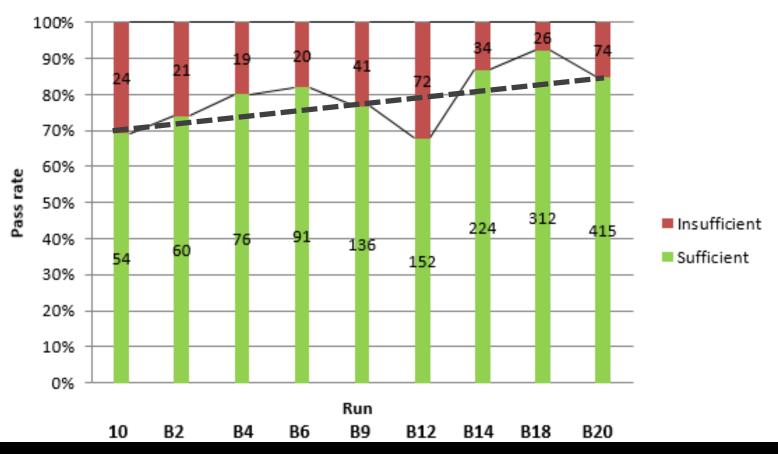
^{*}PR-positivity and intensity as characterized by NordiQC reference laboratories using the mmAb clone 16 (Leica/Novocastra)

All tissues were fixed in 10% neutral buffered formalin for 24 – 48 hours and processed according to Yaziji et al. (1).


Focus:


Appropriate technical quality; signal-to-noise, morphology etc


Appropriate analytical sensitivity and specificity — indicated by concordance of PR status in the included tumours to reference



Performance history

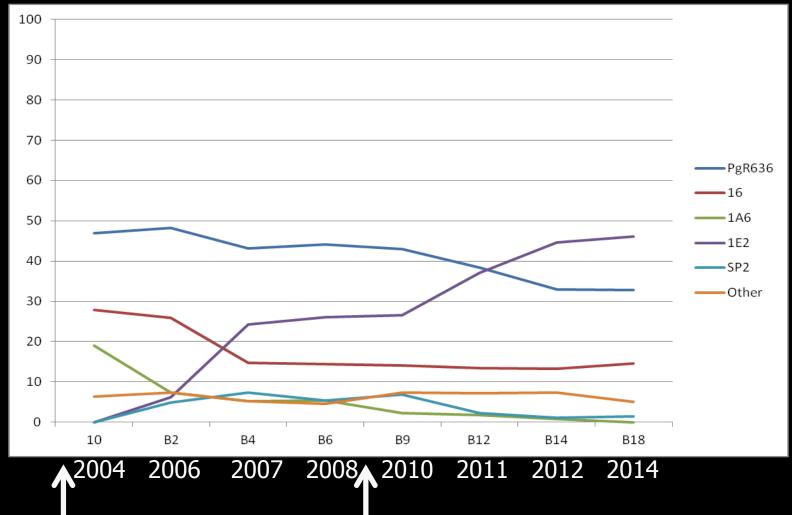

This was the ninth NordiQC assessment of PR. A small decrease in the proportion of sufficient results was seen compared to the previous runs, as shown in figure 1:

Figure 1 – pass rate in the 9 NordiQC assessments for PR

2004 2006 2007 2008 2010 2011 2012 2014 2015

Comparison of different antibodies for detection of progesterone receptor in breast cancer

Steroids 67 (2002) 799–813
Michael Press a,b, Betsy Spaulding c, Susan Groshen b, David Kamınsky', Margaret Hagerty',
Lori Sherman c, Kurt Christensen c, Dean P, Edwards c,*

^a Department of Pathology, University of Southern California School of Medicine, Los Angeles, CA 90033, USA

^b Norris Comprehensive Cancer Center, University of Southern California School of Medicine, Los Angeles, CA 90033, USA

^c DAKO Corporation, Carpinteria, CA 99013, USA

^d Department of Pathology, Lisenhower Medical Center, Patho Desert, CA, USA

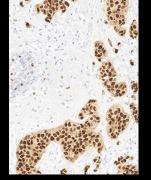
^c Department of Pathology, USA 1821, USA 1822, USA 1822, USA 1822, USA 1823, USA 1824, USA

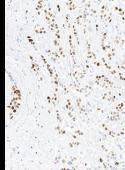
Potential for False-Positive Staining With a Rabbit Monoclonal Antibody to Progesterone Receptor (SP2)

Findings of the UK National External Quality Assessment Scheme for Immunocytochemistry and FISH Highlight the Need for Correct Validation of Antibodies on Introduction of Antibodies on I

Merdol Ibrahim, PhD,¹ Andrew Dodson, MSc,² Sarah Barnett, MSc,¹ David Fish, MSc,² Bharat Jasani, PhD,⁴ and Keith Miller, MSc,¹

Key Words: Breast hormonal receptors: Procesterone receptor: Rabbit monoclonal antibody: SP2: Quality assurance: Antibody validation




Table 1: Antibodies and	lasse	essment marks for PR	run B20					
Concentrated antibodies	n	Vendor	Optimal	Good	Borderline	Poor	Suff.¹	Suff. OPS ²
mAb clone 16	48 1 1	Leica/Novocastra Biocare Vector	39	7	3	1	92%	96%
mAb clone cocktail 16 + SAN27	1	Leica/Novocastra	0	1	0	0	-	-
mAb clone 1A6	5	Leica/Novocastra	2	1	0	2	-	-
mAb clone PgR 636	68	Dako	48	15	4	1	93%	94%
mAb clone PgR 1294	17	Dako	13	4	0	0	100%	100%
rmAb clone SP2	5	Thermo/NeoMarkers	2	2	0	1	-	-
rmAb clone SP42	1	Zytomed	1	0	0	0	-	-
rmAb clone Y85	1	Cell Marque Thermo/NeoMarkers	1	1	0	0	-	-
Ready-To-Use antibodies								
mAb clone 16 PA0312	13	Leica/Novocastra	11	2	0	0	100%	100%
mAb clone 16 MAD-000670QD	2	Master Diagnostica	2	0	0	0	-	-
mAb PgR 636 IR/IS068	78	Dako	60	15	1	2	96%	96%
mAb clone PgR 1294 K4071/SK310	4	Dako	1	3	0	0	-	-
mAb clone PR88 AM328-5ME	1	Biogenex	0	0	1	0	-	-
rmAb clone 1E2 790-2223/4296	239	Ventana	85	98	53	3	77%	88%
rmAb clone SP2 Kit-0013	1	Maixin	1	0	0	0	-	-
rmAb clone SP2 RM-9102	1	Thermo/NeoMarkers	0	0	1	0	-	-
pAb E2071	1	Spring Bioscience	0	0	0	1	-	-
Total	489		266	149	63	11	-	
Proportion			54%	31%	13%	2%	85%	

HIER alk. pH
2- & 3-step kits
Carefully calib.

Uterine cervix – all columnar epith. cells, and majority of basal squam. epith. cells (can be neg. in some pts).

Proportion of sufficient stains (optimal or good).

²⁾ Proportion of sufficient stains with optimal protocol settings only, see below.

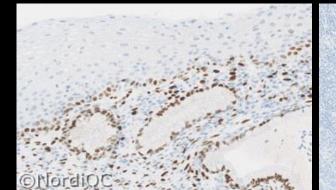
^{*}discontinued product

Progesterone receptor;

Insufficient HIER

5% Impaired morphology, etc 75% Weak / False negative 20% False positive Tonsil Suf. Ins. Too low titre (16, PgR636)

Clone SP2 and 1E2. 1E2 mainly by off-label protocol (ext. sensitivity) Clone 1A6, Biotin-based kits, HIER in pressure cooker



Breast panel: Progesterone Receptor Basic protocol settings for an optimal staining result (NQC)

	Retrieval	Titre	Detection	RTU	Detection
mAb 16	HIER High	1:75-800	2- & 3-step	Leica	3-step
mAb PGR636*	HIER (High)	1:100-800	2- & 3-step	Dako	3-step
mAb PGR1294	HIER (High)	1:250-5.000	2- & 3-step	Dako	2-step
rmAb 1E2**	HIER High	-	-	Ventana	2-step

* mAb clone PGR636 has shown to be less successful on Ventana BenchMark Ultra

rmAb clone 1E2, RTU might provide aberrant false pos. result by 3-step protocols, reduced HIER and prolonged Ab incubation time compared to Ventana guidelines

Use uterine cervix and tonsil to verify level of sensitivity and specificity;

Assessment Run B21 2016 HER-2 IHC

Recommended HER2 assays

Recommended HER2 control tissue

Material

The slide to be stained for HER-2 comprised the following 5 tissues:

	IHC: HER-2 Score* (0, 1+, 2+, 3+)	FISH: HER-2 gene/chr 17 ratio**
1.Breast carcinoma	3+	> 6.0 (clusters) (amplified)
2.Breast carcinoma	2+	2.4 - 2.9 (amplified)
3.Breast carcinoma	1-2+	1.2 - 1.7 (unamplified)
4.Breast carcinoma	0-1+	1.1 - 1.4 (unamplified)
5.Breast carcinoma	0-1+	0.9 - 1.2 (unamplified)

^{1 2 3 4 5}

All carcinomas were fixed for 24 - 48 h in 10% neutral buffered formalin.

Focus:

Appropriate technical quality; signal-to-noise, morphology etc

Appropriate analytical sensitivity and specificity — indicated by concordance to FISH status and IHC level established by reference data in all the included tumours.

^{*} HER-2 immunohistochemical score (see table below) as achieved by using the three FDA approved kits and antibodies, HercepTest™ Dako, Oracle™ Leica and PATHWAY® Ventana, in NordiQC reference laboratories.

^{**} HER-2 gene/chromosome 17 ratios achieved using Zyto*Light* ® SPEC HER2/CEN 17 Dual Color FISH (Zytovision)

Table 1. Assessment	marks	for IHC assays run B21	, HER-2	IHC				
FDA approved HER-2 assavs	n	Vendor	Optimal	Good	Borderline	Poor	Suff.¹	Suff. OPS ²
PATHWAY® rmAb clone 4B5, 790-2991	119	Ventana/Roche	110	6	1	2	97%	97%
CONFIRM™, rmAb clone 4B5, 790-4493	64	Ventana/Roche	62	1	0	1	98%	100%
CONFIRM™, rmAb clone 4B5, 800-2996	2	Ventana/Roche	2	0	0	0	-	-
HercepTest™ SK001	42	Dako/Agilent	39	1	0	2	95%	98%
HercepTest™ K5207	8	Dako/Agilent	7	1	0	0	100%	100%
HercepTest™ K5204	5	Dako/Agilent	2	3	0	0	100%	100%
Oracle™ mAb clone CB11, TA9145	6	Leica	4	2	0	0	100%	100%
Antibodies ³ for laboratory developed HER-2 assays, conc. antibody	n	Vendor	Optimal	Good	Borderline	Poor	Suff. ¹	Suff. OPS ²
mAb clone 10A7	1	Leica/Novocastra	0	1	0	0	-	-
mAb clone CB11	6 1 1	Leica/Novocastra Biogenex Klinipath	3	2	2	1	62%	100%
rmAb clone EP1045Y	1	Thermo/NeoMarkers	0	1	0	0	-	-
rmAb clone EP3	1 1 1	Biocare Bio SB PathnSitu	2	1	0	0	-	-
rmAb clone SP3	17 2 2 1 1	Thermo/NeoMarkers Thermo/Pierce Zytomed Cell Marque Immunologic Spring Bioscience	13	7	1	3	83%	85%
pAb clone A0485	33	Dako	20	6	3	4	79%	82%
Unknown	1	Unknown	0	0	0	1	-	-
Antibodies for laboratory developed HER-2 assays, RTU	n	Vendor	Optimal	Good	Borderline	Poor	Suff.¹	Suff. OPS ²
rmAb clone SP3, MAD-000308QD	1	Master Diagnostics	0	0	0	1	-	-
Ab clone MXR001, RMA-0701	1	Maixin	1	0	0	0	-	-
Total	319		265	32	7	15	-	-
Proportion			83%	10%	2%	5%	93%	-

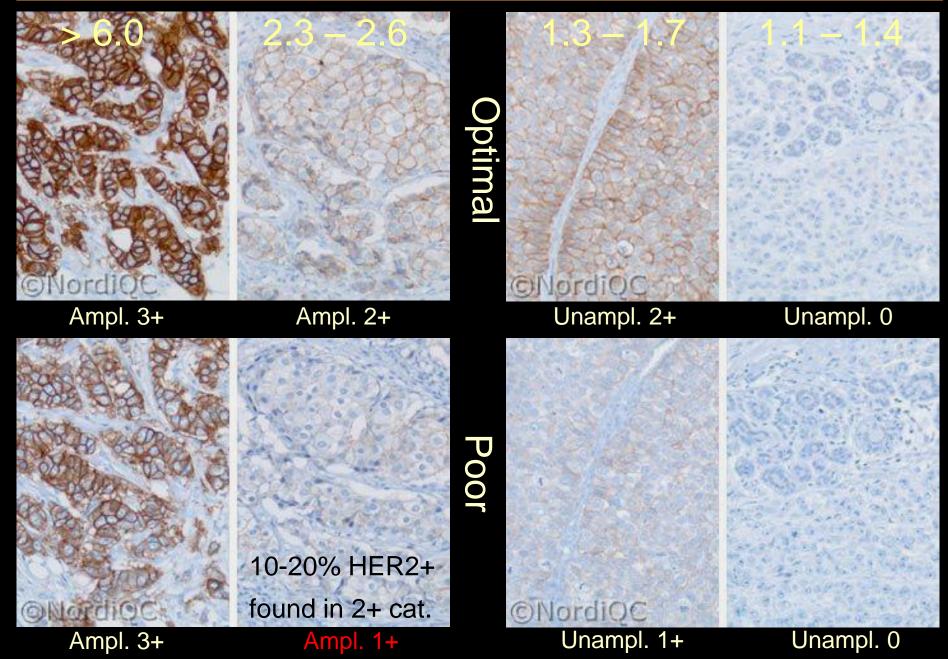
1	2
3	4 5

-		
		IHC: HER-2 Score*
		(0, 1+, 2+, 3+)
	1.Breast carcinoma	2-3+
	2.Breast carcinoma	0-1+
	3.Breast carcinoma	1-2+
	4.Breast carcinoma	3+
	5.Breast carcinoma	0-1+***
		FISH: HER-2 gene/chr
		FISH: HER-2 gene/chr 17 ratio**
	1.Breast carcinoma	
	1.Breast carcinoma 2.Breast carcinoma	17 ratio**
		17 ratio** 2.3 - 2.8 (a)
	2.Breast carcinoma	17 ratio** 2.3 - 2.8 (a) 0.9 - 1.3 (u)

Material processed according to ASCO/CAP

JOURNAL OF CLINICAL ONCOLOGY ASCO SPECIAL ARTICLE

Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinica Practice Guideline Update


Antonio C. Wolff, *M. Elizabeth H. Hammond, *David G. Hicks, *Mitch Dowsett, *Lisa M. McShane, *
Kimberly H. Allicon, Donald C. Allred, John M.S. Bartlett, Michael Bilous, Patrick Fitzgibbons, Wedad Hanna
Robert B. Forkins, Pamela B. Mangu, Sounnyang Paik, Edith A. Perez, Michael F. Press, Patricia A. Spears,
Gall H. Vanec, Ginespep Valle, and Daniel F. Hayes'

¹⁾ Proportion of sufficient stains (optimal or good).

²⁾ Proportion of sufficient stains with optimal protocol settings only, see below.

³⁾ mAb: mouse monoclonal antibody, rmAb: rabbit monoclonal antibody, pAb: polyclonal antibody.

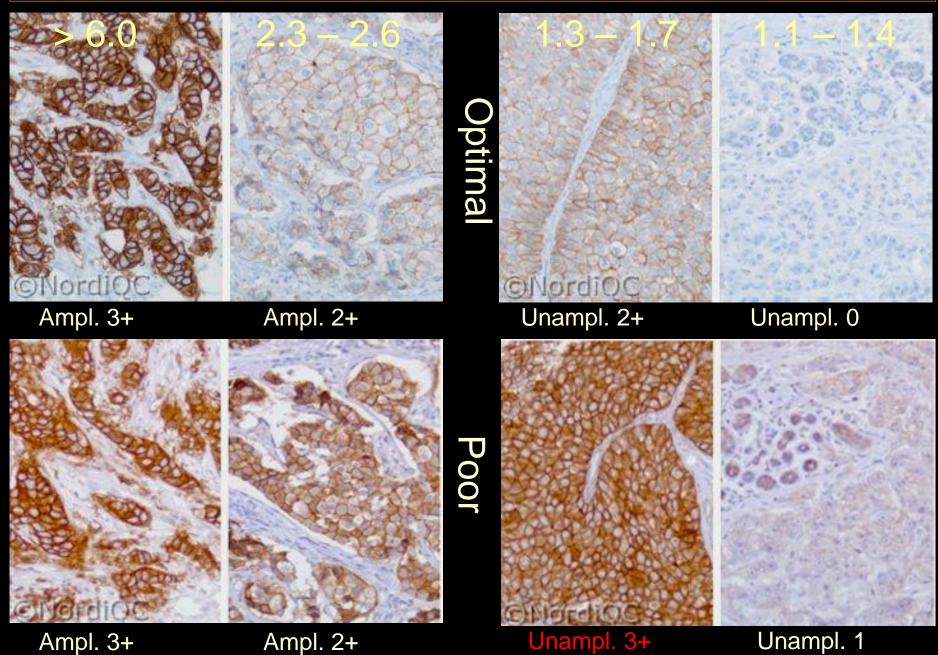
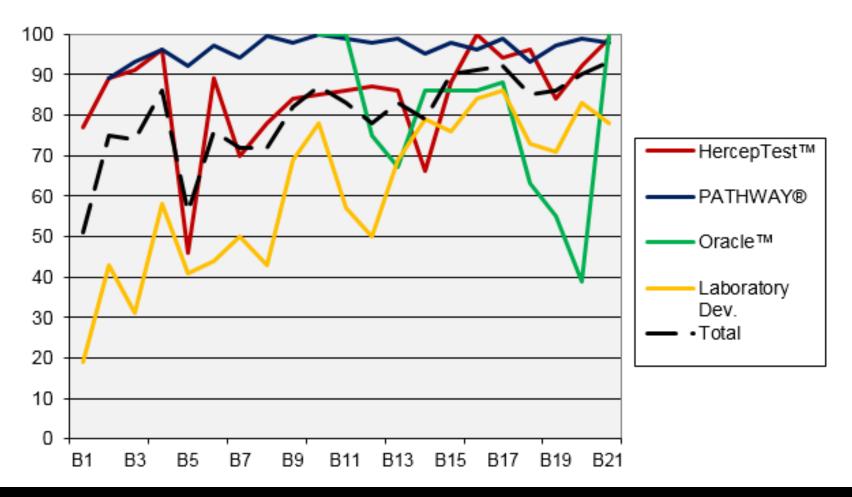



Figure 1. Pass rates of 21 HER-2 IHC assessments in the NordiQC breast cancer module

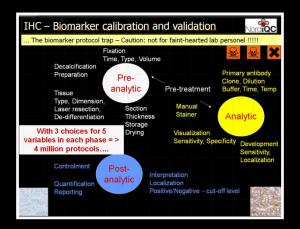
App 90 % of insuff. results are FN and seen both by FDA / CE-IVD kits and laboratory developed assays.

FP results have virtually only been seen by laboratory developed assays.

Typical causes for insufficient results in the NordiQC HER2 IHC breast module:

FDA / CE-IVD HER2 IHC kits:

PATHWAY®, Ventana:


Too short HIER (<24M) and/or too short incubation of primary Ab (<12M)

HercepTest™, Dako:

Too short HIER (<40M) and/or too short incubation of primary & secondary Ab (<30M)

Oracle™, Leica:

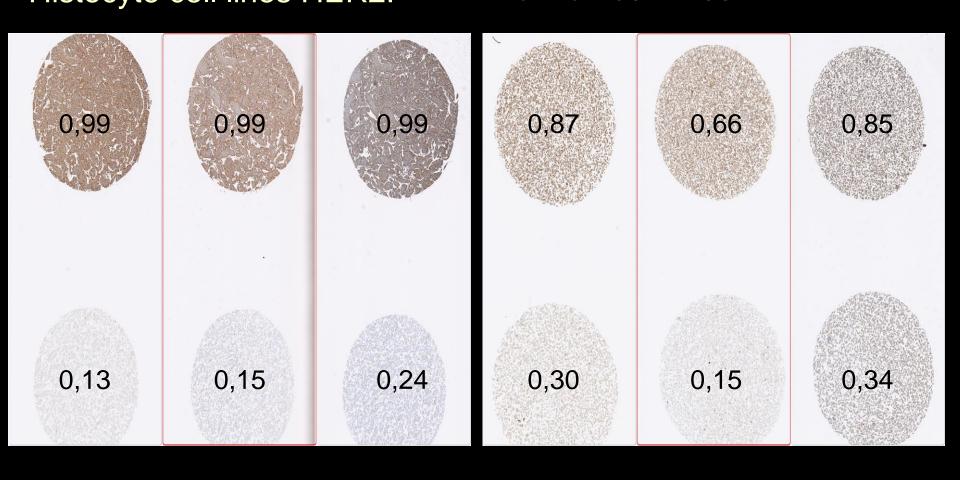
No single or combination of causes have been identified

Laboratory developed assays:

Inappropriate titre of primary Ab, less successful primary Ab, insufficient HIER, etc.....

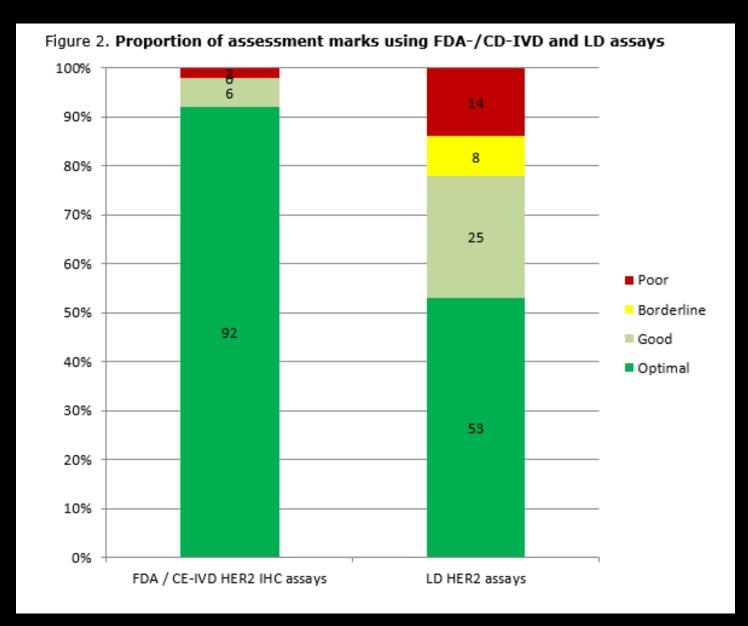
Control material for HER2 IHC: performace control / consistency

Histology: 3+ tumour

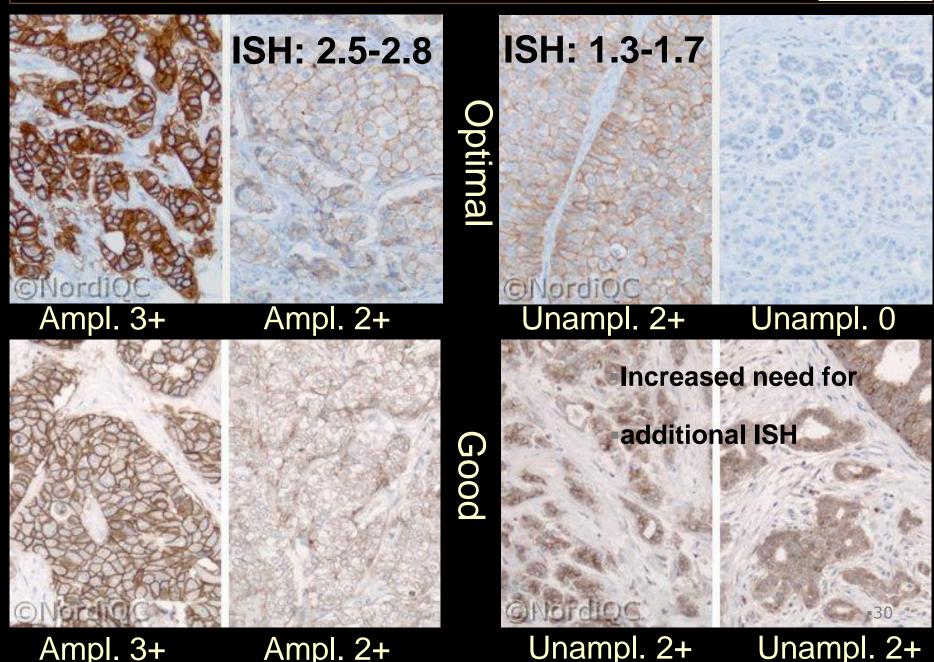

Cell lines: 3+

2+ tumour

Applicable for DIA & ref data comparing run-to-run



Control material for HER2 IHC: performace control / consistency
Histocyte cell lines HER2: Horizon cell lines HER2



Pathway Oracle Herceptest Pathway Oracle HercepTest

Assessment Run H9 2016 HER-2 ISH

Material

Table 1. Content of the multi-tissue block used for the NordiQC HER-2 ISH assessment, run H9

Table 1. Content of the multi-cissue block used for the North Chek-2 15h assessment, it										
	HER-2 IHC*	Dual - SISH**	FISH***	FISH***						
	IHC score	HER2/chr17 ratio¤	HER2/chr17 ratio¤	HER2 copies						
1. Breast carcinoma	0	0.8	0.9 - 1.0	< 4						
2. Breast carcinoma	2+	1.1	1.0 - 1.3	< 4, ≥ 4 < 6						
3. Breast carcinoma	2+	1.5	1.3 - 1.9	< 4, ≥ 4 < 6						
4. Breast carcinoma	2+	2.3	2.2 - 2.9	> 6						
5. Breast carcinoma	3+	7.0	4.2 - 6.4	> 6						
* DATHWAY® (Ventana), data from two reference labo										

All tissues were fixed for 24 - 48 hours in 10% neutral buffered formalin according to the ASCO/CAP 2013 guidelines for tissue preparation of breast tissue for HER-2 ISH analysis.

HER-2 BRISH, Technical assessment

The main criteria for assessing a BRISH HER-2 analysis as technically **optimal** were the ability to interpret the signals and thus evaluate the HER2/chr17 ratios in all five tissues.

The staining reaction was assessed as **good**, if the HER2/chr17 ratios could be evaluated in all five tissues, but the interpretation was slightly compromised e.g. due to excessive retrieval, weak or excessive counterstaining or focal negative areas.

The staining reaction was assessed as **borderline** if one of the tissues could not be evaluated properly e.g. due to weak signals, large negative areas with no signals (> 25% of the core) or a low signal-to-noise ratio due to excessive background staining.

The staining reaction was assessed as **poor** if two or more of the tissue cores could not be evaluated properly e.g. due to weak signals, large negative areas with no signals (> 25% of the core) or a low signal-to-noise ratio due to excessive background staining.

HER-2 BRISH and FISH interpretation

For both BRISH and FISH, participating laboratories were asked to submit a scoring sheet with their interpretation of the HER2/chr17 ratio. Results were compared to NordiQC FISH data from reference laboratories to analyze scoring consensus.

Consensus scores from the NordiQC FISH reference laboratories

- · Breast ductal carcinoma no. 1: non-amplified
- · Breast ductal carcinoma no. 2 and 3: non-amplified or equivocal
- · Breast ductal carcinoma no. 4 and 5: amplified

The ASCO/CAP 2013 guidelines were applied for the interpretation of the HER-2 status

Unamplified: HER2/chr17 ratio < 2.0 using a dual probe assay or an average < 4 HER-2 gene copies per cell/nucleus (both dual and single probe assay)

Equivocal: HER2/chr17 ratio of < 2.0 using a dual probe assay with an average of \ge 4 and < 6 HER-2 gene copies per cell/nucleus (both dual and single probe assay)

^{*} PATHWAY® (Ventana), data from two reference labs.

^{**} Inform HER-2 Dual ISH kit (Ventana), data from one reference lab.

^{***} HER2 FISH pharmDX™ Kit (Dako) and HER2 FISH (Zytovision), range of data from one reference lab. ×HER2/chr17: HER-2 gene/chromosome 17 ratio

Participation

Number of laboratories registered for HER-2 BRISH	126
Number of laboratories returning slides	116 (90%)
Number of laboratories returning scoring sheet	104 (92%)
Number of laboratories registered for HER-2 FISH	61
Number of laboratories returning scoring sheet	54 (89%)

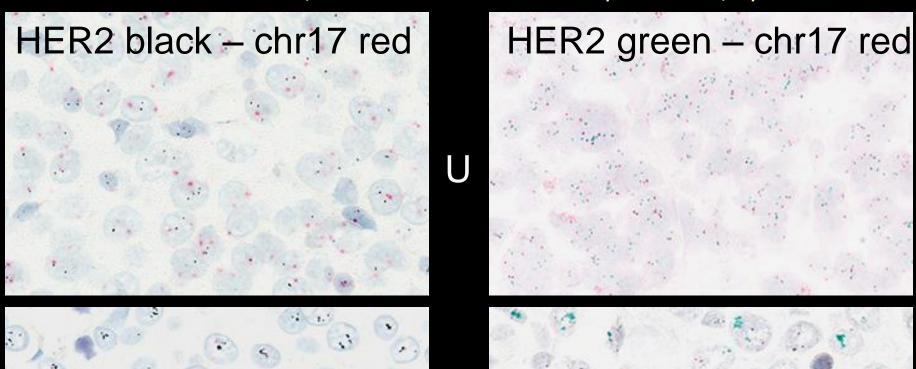
5% didn't return slides for BRISH due to technical errors.

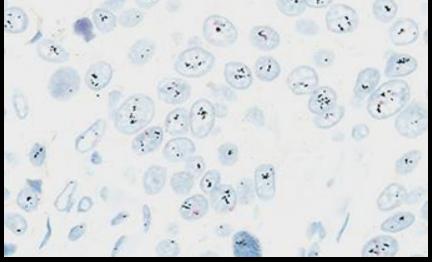
Results BRISH, technical assessment

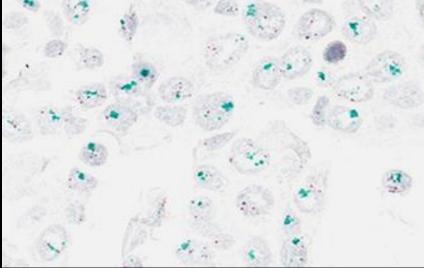
In total, 116 laboratories participated in this assessment. 79 laboratories (68%) achieved a sufficient mark (optimal or good). Results are summarized in Table 2.

Table 2. HER-2 BRISH assays and assessment marks for BRISH HER-2 run H9.

Two colour HER-2 assays	n	Vendor	Optimal	Good	Borderline	Poor	Suff.1	Suff. OPS ²
INFORM™ HER-2 Dual ISH 800-4422		Ventana	32	22	17	15	63%	73%
INFORM™ HER-2 Dual ISH + IHC 800-4422 + HER2 IHC	7	Ventana	5	1	1	0	86%	86%
DuoCISH pharmDx™ SK109	6	Dako	3	3	0	0	100%	100%
Zyto <i>Dot</i> [®] 2C C-3022 / C-3032	6	ZytoVision	4	1	0	1	83%	100%
One colour HER-2 assays								
INFORM™ HER-2 SISH 780-4332	5	Ventana	3	2	0	0	100%	100%
ZytoDot® C-3003	6	ZytoVision	3	0	2	1	50%	75%
Total	116	5	50	29	20	17	68%	-
Proportion								


- 1) Proportion of sufficient stains.
- 2) Proportion of sufficient stains with optimal protocol settings only, see below.




Technically optimal results in the NordiQC HER2 ISH breast module:

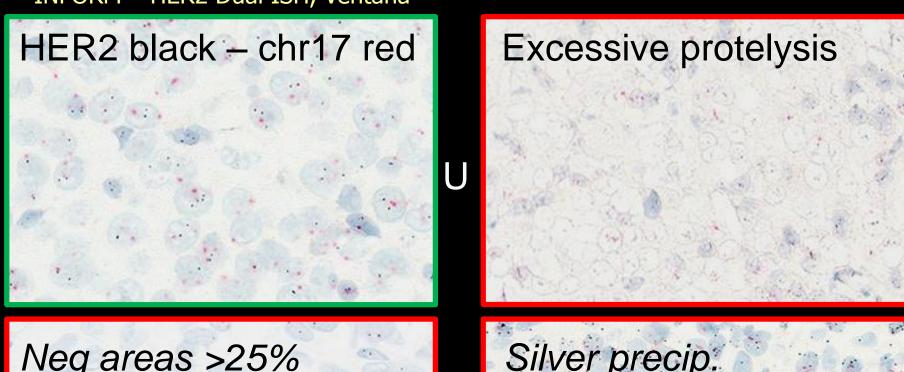
INFORM™ HER2 Dual ISH, Ventana

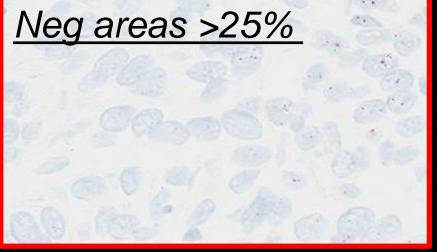
Zyto Dot® 2C, ZytoVision

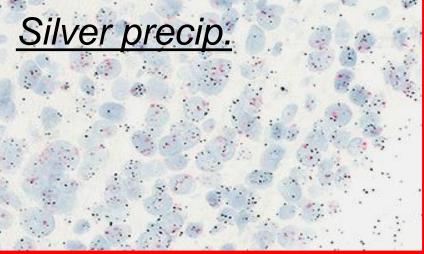
Typical causes for insufficient results in the NordiQC HER2 ISH breast module:

FDA / CE-IVD HER2 BRISH (CISH/DDISH/etc) kits:

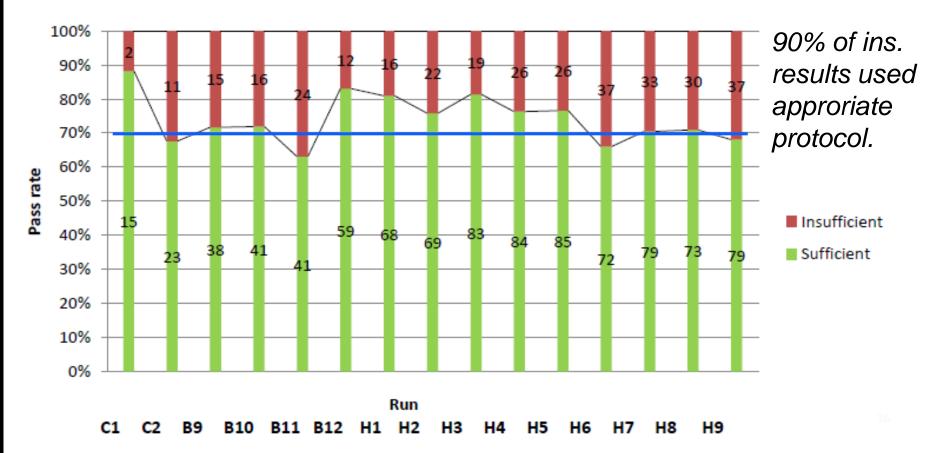
INFORM™ HER2 Dual ISH, Ventana: Excessive proteolysis (>16M), HIER in CC1.


DuoCISH™ pharmDx™, Dako: Insufficient proteolysis, inappropriate handling of chromogen.


Zyto *Dot*[®] 2C, Zyto Vision: Excessive proteolysis.


In 90% of insufficient results, no single or combination of causes could be identified

Technically insufficient results in the NordiQC HER2 ISH breast module: INFORM™ HER2 Dual ISH, Ventana

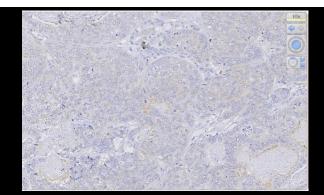

HER-2 BRISH, Technical assessment

The main criteria for assessing a BRISH HER-2 analysis as technically **optimal** were the ability to interpret the signals and thus evaluate the HER2/chr17 ratios in all five tissues.

Performance history

This was the 15th assessment of HER-2 BRISH in NordiQC and a relatively consistent pass rate level has been observed in the latest runs. Data is shown in Fig 1.

Fig. 1: Proportion of sufficient results for HER-2 BRISH in the NordiQC assessments



IHC scoring system according to the 2013 ASCO/CAP guidelines

Score 0	No staining is observed or incomplete membrane staining is observed in \leq 10% of the tumour cells.
Score 1+	A faint perceptible and incomplete membrane staining is observed in more than 10% of the tumour cells.
Score 2+	A weak to moderate circumferential incomplete membrane staining is observed in more than 10% of the tumour cells or an intense circumferential complete membranous staining in \leq 10% of the tumour cells.
Score 3+	An intense circumferential complete membrane staining is observed in more than 10% of the tumour cells.

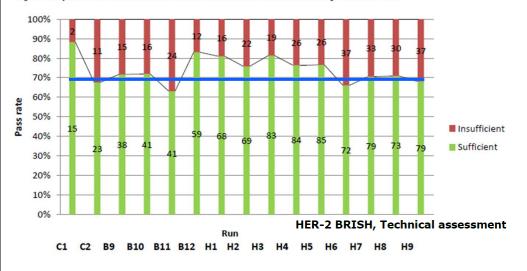
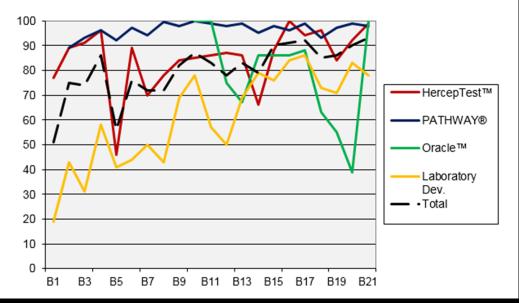
- What is faint? Visible at 40X?
- What is weak? Visible at 10X?

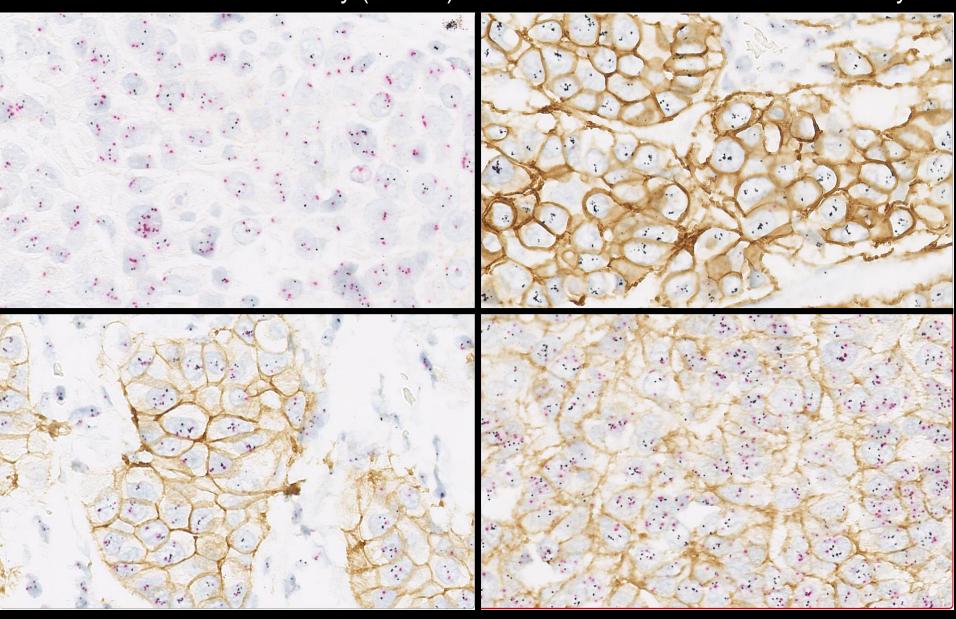
Up to 20-40% HER2 IHC tests are reflexed to ISH due to expanded criteria for 2+ (internal data)

Performance history

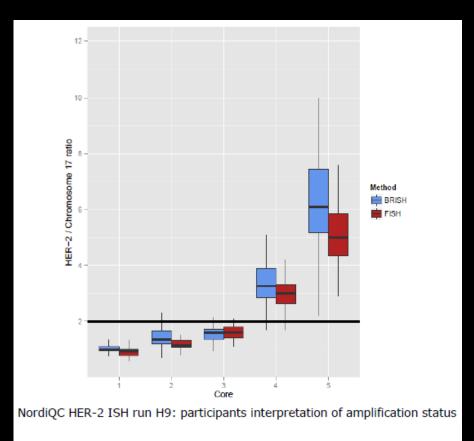
This was the 15th assessment of HER-2 BRISH in NordiQC and a relatively consistent pass rate level has been observed in the latest runs. Data is shown in Fig 1.

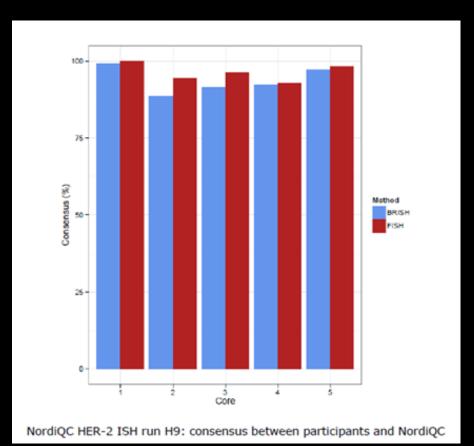
Fig. 1: Proportion of sufficient results for HER-2 BRISH in the NordiQC assessments


Figure 1. Pass rates of 21 HER-2 IHC assessments in the NordiQC breast cancer module

From a technical point of view, it might be critical to change from a robust and relatively simple IHC assay to a less robust and complex test and simultanously more expensive test.....




HER2 Gene-Protein-Assay (Roche): HER2 IHC + DDISH - no EQA data yet.

Slightly higher concordance regarding interpretation for FISH

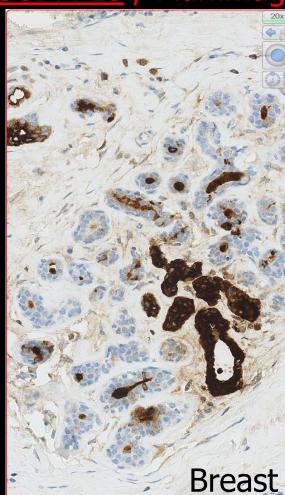
Conclusions:

- Pass rates for ER, PR and HER2 IHC are improved.
 Robust clones, high quality IHC systems.
- 2. CE-IVD labelled RTU assays / systems have shown superior performance compared to laboratory developed assays.
- 3. HER2 BRISH (DDISH/SISH/CISH) results have not been improved.

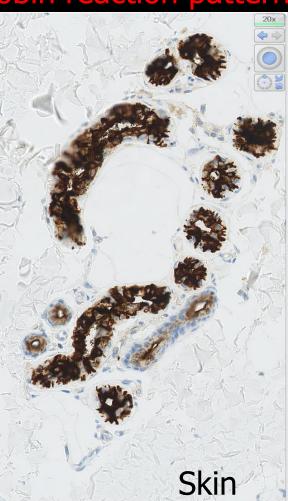
Breast panel:

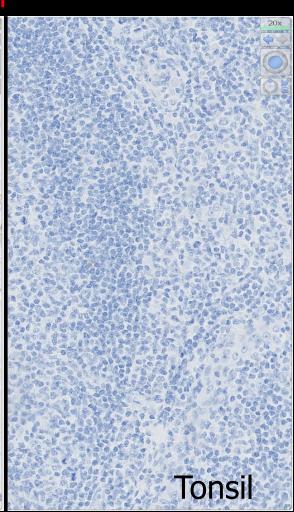
- GCDFP-15
- Mammaglobin
- Gata 3
- Smooth MHCM
- ASMA
- (p63)
- E-cadherin
- p120
- ER
- PR
- HER-2

Is it primary breast?

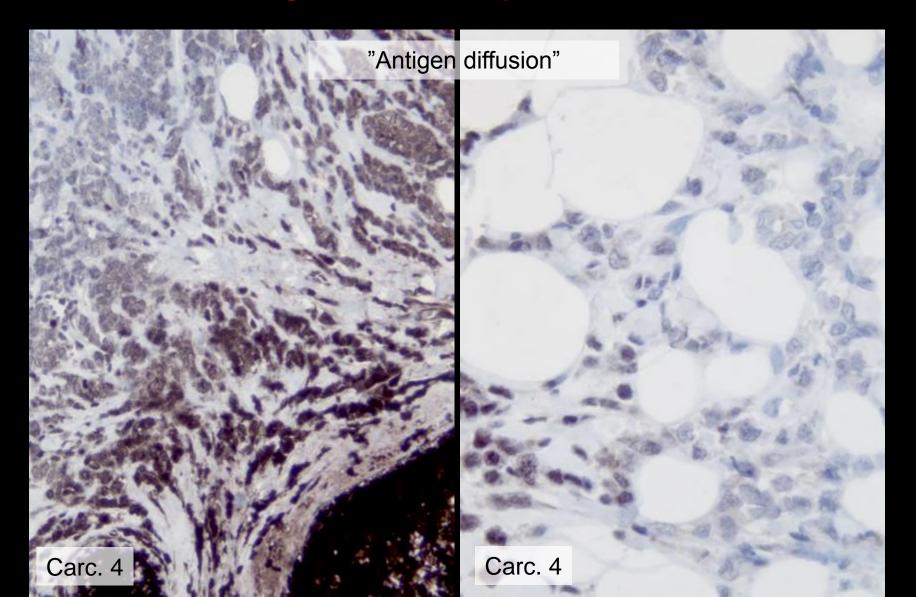

Is it invasive?

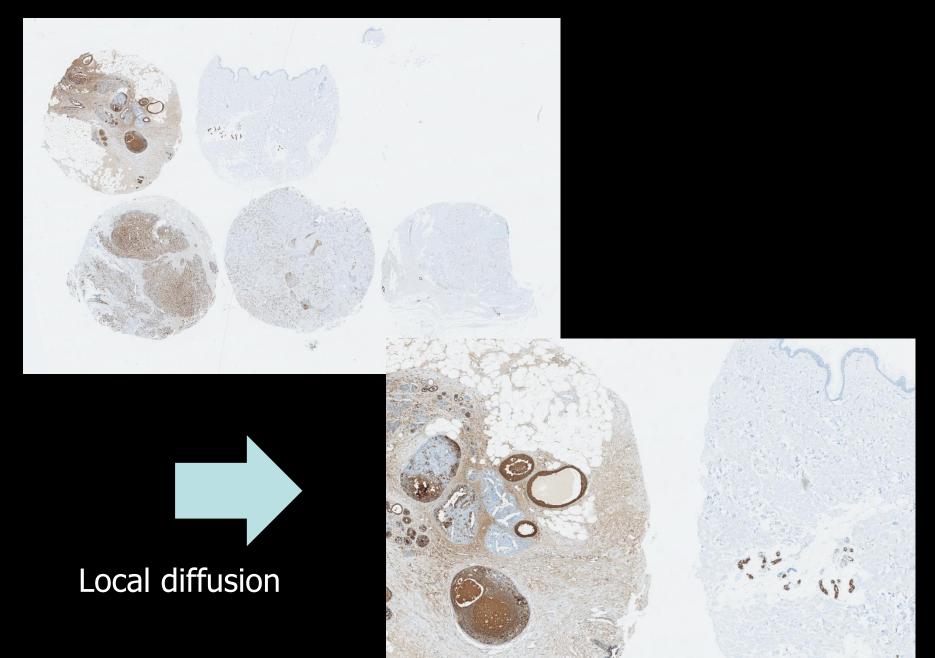
Is it lobular or ductal?


Which teraphy?

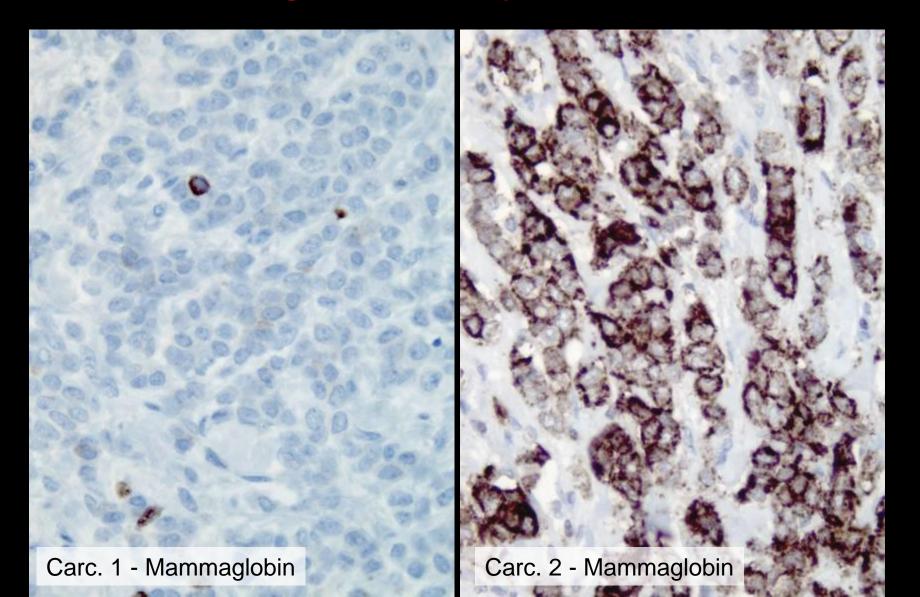

GCDFP15 / Mammaglobin reaction pattern

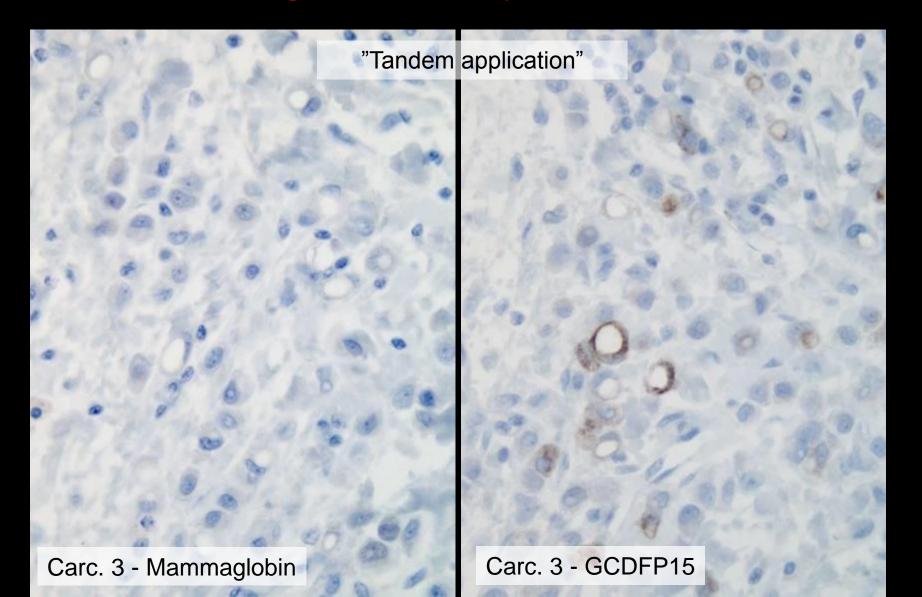
A moderate to strong, distinct cytoplasmic staining reaction in scattered ductal epithelial cells and in apocrine metaplastic cells.


A moderate to strong, distinct cytoplasmic staining reaction of the majority of the epithelial cells of the eccrine sweat glands


No staining reaction should be seen.

GCDFP15 / Mammaglobin reaction pattern





GCDFP15 / Mammaglobin reaction pattern

GCDFP15 / Mammaglobin reaction pattern

Table 1. Abs and assessment marks for GCD, run 36								
Concentrated Abs	N	Vendor	Optimal	Good	Borderl.	Poor	Suff. ¹	Suff. OPS ²
mAb clone 23A3	43 12 10 2 2 1 1	Leica/Novocastra Thermo/Neomarkers Dako Cell Marque Diagnostic Biosystems Labs Inc. Vector Lab. Abcam	25	33	8	6	81 %	88 %
mAb clone D6	6 2 1 1	Covance/Signet ID Labs Biocare Invitrogen Sanbio	4	5	1	1	82 %	86 %
mAb SPM135	1	Spring Bioscience	0	1	0	0	-	-
rmAb EP1582Y	2 1	Cell Marque Zytomed systems	1	2	0	0	-	-
rmAb EP95	1	Epitomics	0	1	0	0	-	-
Ready-To-Use Abs								
mAb clone 23A3 IS/IR077	20	Dako	10	10	0	0	100 %	100 %
mAb clone 23A3 PA0350	1	Leica/Novocastra	0	1	0	0	-	-
mAb clone 23A3 257M-17	1	Cell Marque	0	1	0	0	-	-
mAb clone 23A3 MS-1170	1	Thermo/Neomarkers	0	0	1	0	-	-
mAb clone 23A3 MAD-001638QD	1	Master Diagnostica	0	0	1	0	-	-
rmAb clone EP1582Y Z60-4386	18	Ventana	10	7	1	0	94 %	94 %
rmAb clone EP1582Y AN481-5M	1	Biogenex	0	1	0	0	-	-
Total	131		50	62	12	7		
Proportion			38 %	48 %	9 %	5 %	86 %	
4) D		1 1/2/2	- C CC - 1	entrance telling				4

(optimal or good), 2) Proportion of sufficient stains with optimal protocol settings only, see below.

Ins.:

Omission of HIER

and/or

too low conc.

RTU > Conc.

(difficult to calibrate... what is best control...)



Fig. 1a. Optimal staining for GCDFP-15 of the breast hyperplasia using the mAb clone 23A3 optimally calibrated as a concentrate, HIER in an alkaline buffer and a polymer based detection system. The majority of the ductal epithelia except for a 20 fold dilution of the primary antibody. The cells show a distinct moderate to strong cytoplasmic staining reaction. Also compare with Fig. 2a - same protocol.

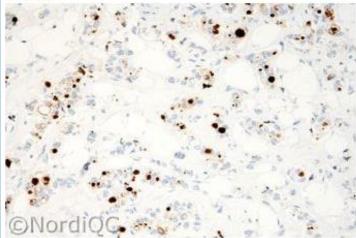


Fig. 2a. Optimal staining for GCDFP-15 of the breast carcinoma no. 5 using same protocol as in Fig. 1a. The majority of the neoplastic cells show a moderate to strong dot-like cytoplasmic staining reaction.

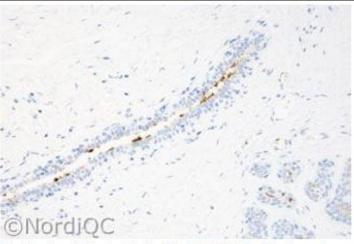
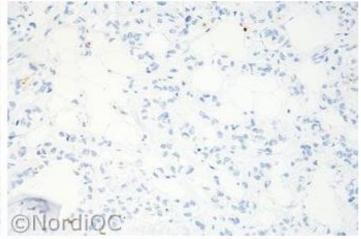


Fig. 1b. Insufficient staining for GCDFP-15 of the breast hyperplasia applying the mAb clone 23A3 as a concentrate using exactly the same protocol settings as used in Fig 1a, proportion and the intensity of the cells demonstrated are significantly reduced compared to the result in Fig. 1a. Also compare with Fig. 2b - same protocol.



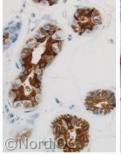

Fig. 2b. Insufficient staining GCDFP-15 of the breast carcinoma no. 5 using same protocol as in Fig. 1b. - same field as in Fig. 2a. Only scattered neoplastic cells show a faint dot-like reaction.

Table 1. Abs and	scores for	[·] mammaglobir	ı, run 25
------------------	------------	--------------------------	-----------

Concentrated Abs	N	Vendor	Optimal	Good	Borderl.	Poor	Suff. ¹	Suff. OPS ²
mAb clone 304-1A5	14 4	Dako BioLogo	7	8	2	1	83 %	100 %
pAb 53625	1	AnaSpec. Inc.	0	0	0	1	-	-
Ready-To-Use Abs								
mAb clone 304-1A5	2	Dako, IR074	2	0	0	0	-	-
rmAb clone 31A5	2	Ventana, 760-4623	2	0	0	0	-	-
Total	23		11	8	2	2	-	-
Proportion			48 %	35 %	9 %	9 %	83 %	100 %

Proportion of sufficient stains (optimal or good), 2) Proportion of sufficient stains with optimal protocol settings only, see below.

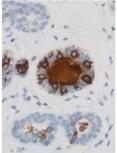


Fig. 1a. Optimal staining for mammaglobin using the mAb clone 304-1A5 optimally calibrated and with HIER. Left: Skin: The majority of the epithelial cells of the eccrine sweat glands show a distinct cytoplasmic reaction. Right: Breast: The apocrine metaplastic cells and few ductal epithelial cells show a distinct cytoplasmic reaction.

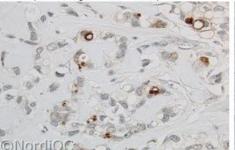
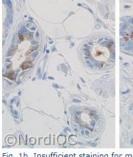
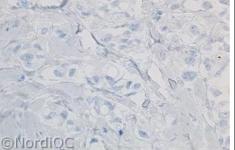
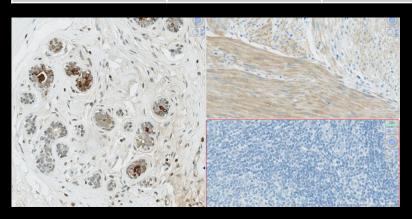




Fig. 3a. Optimal staining for mammaglobin of the breast carcinoma no. 5 using same protocol as in Fig. 1a & 2a. The carcinoma no. 5 using same protocol as in Fig. 1b & 2b. majority of the neoplastic cells show at least a weak cytoplasmic reaction and focally a dot-like staining.

only extracellular mucus is demonstrated. Also compare

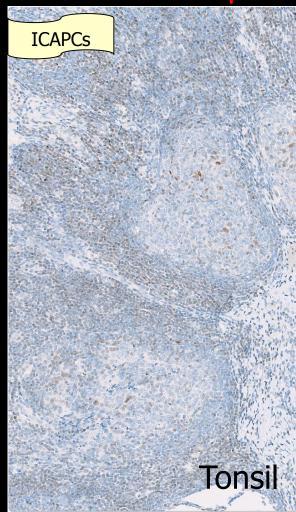
Fig. 3b. Insufficient staining for mammaglobin of the breast None or only a dubious reaction is seen in the neoplastic

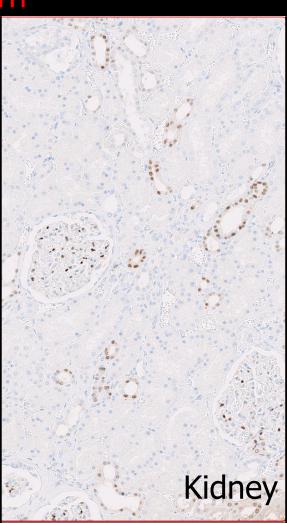
Ins.:

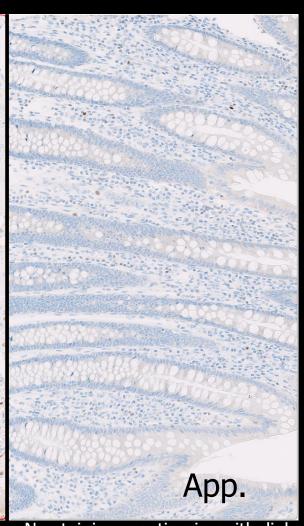

Too low/high conc.

HIER and calibration mandatory for optimal results

Breast panel: <u>GCDFP15</u> & Mammaglobin Basic protocol settings for an optimal staining result (NQC)

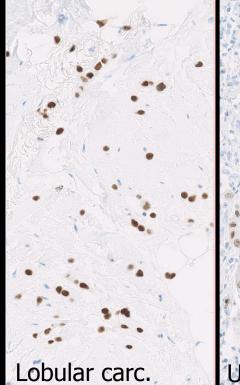

	Retrieval	Titre	Detection	RTU	Detection
mAb 23A3	HIER High	1:10 - 75	3-step	Dako	2- & 3-step
mAb D6	HIER High	1:4 - 100	3-step	-	-
rmAb EP1582Y	HIER High	1:500-1.000	3-step	Ventana	2- & 3-step
mAb 304-105	HIER High	1:50 - 400	2- & 3-step	Dako	2-step
mAb 31A5	HIER High	-	-	Ventana	2-step

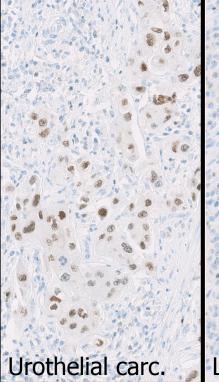

rmAb clone EP1582Y can show positive staining reaction in smooth muscle cells

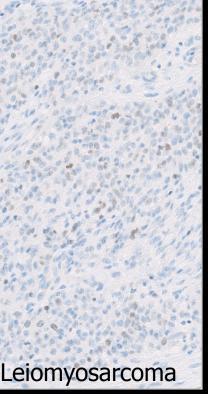

GATA3 reaction pattern

An at least weak nuclear staining reaction of the majority of T-cells in the T-zones in the tonsil.

An at least moderate, distinct nuclear staining reaction of virtually all epithelial cells in collecting ducts and podocytes in glomeruli in the kidney.


No staining reaction in epithelial cells should be seen.




Breast panel: GATA3

Basic protocol settings for an optimal staining result (NQC)

	Retrieval	Titre	Detection	RTU	Detection
mAb L50-8023	HIER TE	1:70-500	2- & 3-step	Ventana	2- & 3-step

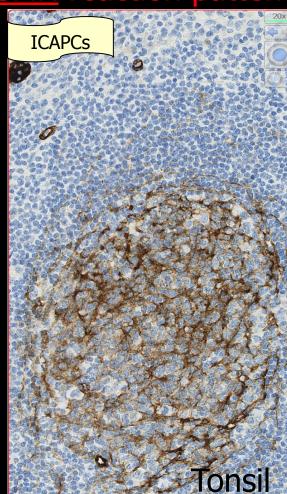
GATA3:

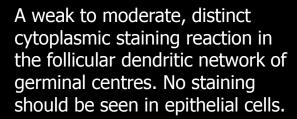
Highly sensitive for Breast carcinomas (& Urothelial carcinoma). But also seen in other neoplasias

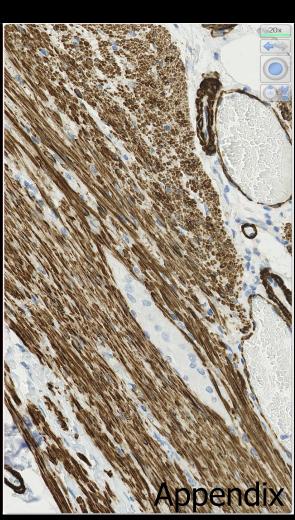
Breast panel:

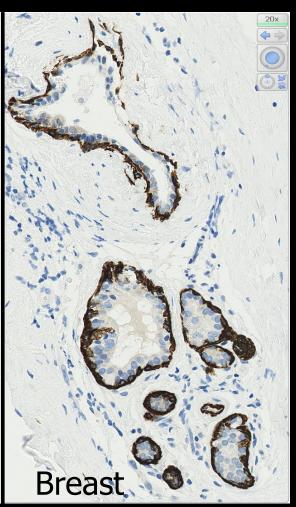
- GCDFP-15
- Mammaglobin
- Gata 3
- Smooth MHCM
- ASMA
- (p63)
- E-cadherin
- p120
- ER
- PR
- HER-2

Is it primary breast?


Is it invasive?


Is it lobular or ductal?


Which teraphy?


SMH reaction pattern

A moderate to strong, distinct cytoplasmic staining reaction of all smooth muscle cells in muscularis propria and vessels. No staining in epithelium.

A moderate to strong cytoplasmic staining reaction must be seen in myoepithelium. No staining reaction should be seen in luminal epithelial cells.

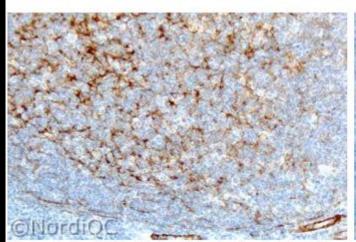


Fig. 1a. Optimal SMH staining of the tonsil using the mAb clone SMMS-1 correctly calibrated and with HIER in an alkaline buffer (Tris-EDTA pH 9). Both the smooth muscle cells of the vessels and dendritic follicular cells of the germinal centre show a moderate and distinct staining. No staining is seen in the lymphocytes.

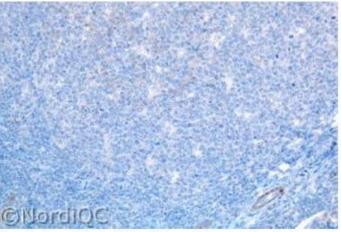


Fig. 1b. Insufficient SMH staining of the tonsil using the mAb clone SMMS-1 too diluted. Only the smooth muscle cells of the vessels are demonstrated, while the dendritic follicular cels of the germinal centre are virtually negative. Also compare with Fig. 2b - same protocol.

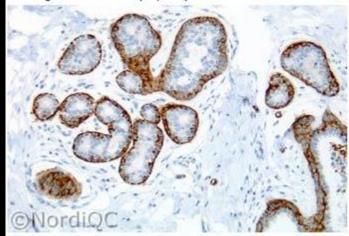


Fig. 2a. Optimal SMH staining of the breast hyperplasia using same protocol as in Fig. 1a. Virtually all the glandular myoepithelial cells show a strong and distinct reaction with no background reaction.

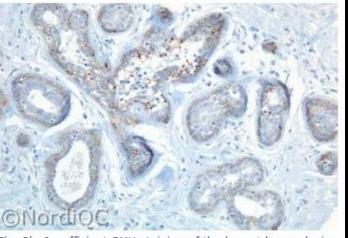
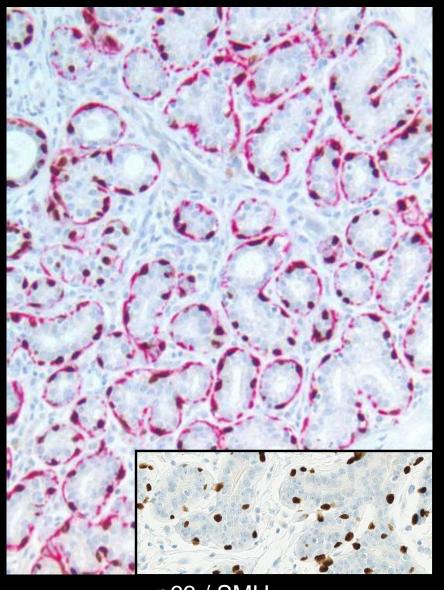


Fig. 2b. Insufficient SMH staining of the breast hyperplasia using same protocol as in Fig. 1b.

The myoepithelial cells only show a weak, ambiguous staining.

mAb clone SMMS-1

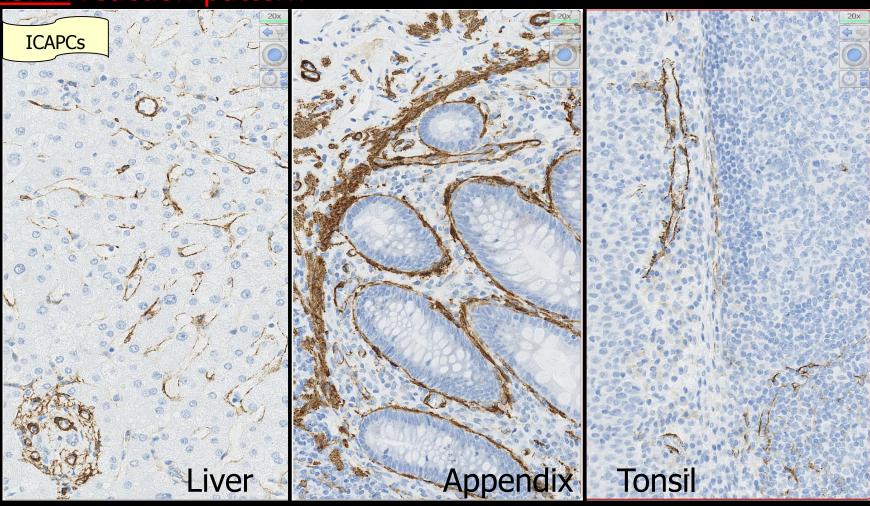

HIER in alk. pH

HIER in alk. pH + proteolysis

Insufficient
HIER provided
a too low
sensitivity

p63 / SMH

p63 / SMH



Breast panel: SMH
Basic protocol settings for an optimal staining result (NQC)

	Retrieval	Titre	Detection	RTU	Detection
mAb SMMS1	HIER High	1:200-1.500	2 & 3-step	Ventana	3-step
rmAb EPR5336	HIER High	1:50 - 100	3-step	-	-

ASMA reaction pattern

A moderate to strong, distinct cytoplasmic staining of the majority of the perisinusoidal cells in the liver. No staining should be seen in hepatocytes.

A strong, distinct cytoplasmic staining of all the smooth muscle cells in the muscularis propria, lamina muscularis mucosae and myofibroblasts lining the crypts. A moderate to strong cytoplasmic staining must be seen in smooth muscle cells – e.g. vessels
No staining should be seen in lymphocytes and epithelial cells.

Table 1. Antibodies and assessment marks for ASMA, run 44								
Concentrated antibodies	n	Vendor	Optimal	Good	Borderline	Poor	Suff.1	Suff. OPS ²
mAb clone 1A4	98 6 5 1 1 1 1 1 1	Dako Thermo/NeoMarkers Sigma Aldrich AbD Serotec Biocare BioGenex Genemed Immunologic Spring Bioscience Zytomed	34	49	23	10 (72%	85%
mAb clone asm-1	10	Leica/Novocastra	2	4	4	0	60%	100%
mAb clone BS66	1	Nordic Biosite	0	1	0	0	~	-
rmAb clone E184	1	Biocare	0	0	0	1	-	-
rmAb clone EP188	1	Epitomics	1	0	0	0	-	-
rmAb clone SP171	1	Spring Bioscience	0	0	1	0	-	-
Unknown	2	Unknown	1	0	1	0	-	-
Ready-To-Use antibodies								
mAb clone 1A4 IR/IS611	44	Dako	23	13	7	1	82%	91%
mAb clone 1A4 760-2833	44	Ventana/Cell Marque	0	6	29	9	14%	-
mAb clone 1A4 202M-9x	3	Cell Marque	0	0	2	1	-	-
mAb clone 1A4 MAD-001195QD	3	Master Diagnostica	0	0	3	0	-	-
mAb 1A4 PM001	1	Biocare	0	0	1	0	-	-
mAb clone 1A4 AM128-5M	1	BioGenex	0	1	0	0	-	-
mAb clone 1A4 Kit-0006	1	Maixin	0	0	1	0	-	-
mAb clone asm-1 PA0943	5	Leica/Novocastra	1	3	1	0	80%	100%
Total	234		62	77	73	22	-	
Proportion			27%	33%	31%	9%	60%	

¹⁾ Proportion of sufficient stains (optimal or good)

²⁾ Proportion of sufficient stains with optimal protocol settings only, see below.

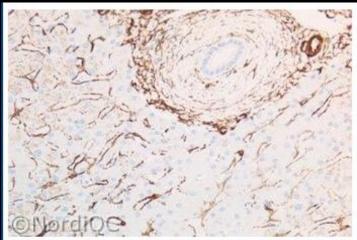


Fig. 1a. Optimal ASMA staining of the liver using the mAb clone 1A4 with HIER. The smooth muscle cells in the portal vessels as well as the perisinusoidal smooth muscle cells show a distinct staining. The liver cells are negative (a weak granular staining is due to lipofuscin).

Fig. 2a. Optimal ASMA staining of the leiomyosarcoma tissue no. 3 in the multitissue block using same protocol as in Fig. 1a. Virtually all the neoplastic cells show a strong and distinct reaction with no background reaction.

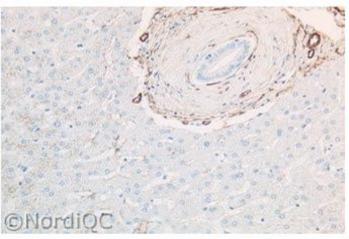


Fig. 1b. Insufficient ASMA staining of the liver using the mAb clone 1A4 in a protocol omitting HIER – same field as in Fig. 1a. The smooth muscle cells in the portal vessels are demonstrated, while the perisinusoidal smooth muscle cells are virtually negative. Also compare with Figs. 2b & 3 b same protocol.

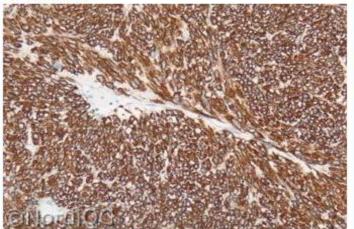


Fig. 2b. ASMA staining of the leiomyosarcoma tissue no. 3 in the multitissue block using same insufficient protocol as in Fig. 1b. Virtually all the neoplastic cells show a strong and distinct reaction with no background reaction – same field as in Fig. 2a. However, also compare with Fig. 3b – same protocol.

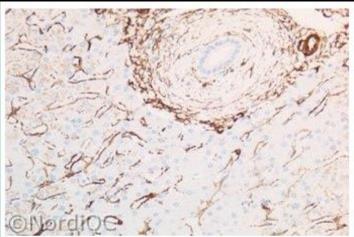


Fig. 1a. Optimal ASMA staining of the liver using the mAb clone 1A4 with HIER. The smooth muscle cells in the portal vessels as well as the perisinusoidal smooth muscle cells show a distinct staining. The liver cells are negative (a weak granular staining is due to lipofuscin).

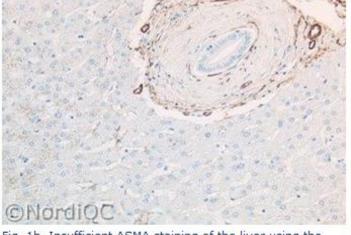


Fig. 1b. Insufficient ASMA staining of the liver using the mAb clone 1A4 in a protocol omitting HIER - same field as in Fig. 1a. The smooth muscle cells in the portal vessels are demonstrated, while the perisinusoidal smooth muscle cells are virtually negative. Also compare with Figs. 2b & 3 b same protocol.

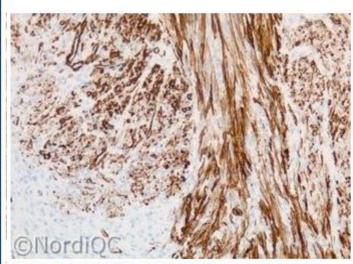


Fig. 3a. Optimal ASMA staining of the leiomyosarcoma tissue no. 4 in the multitissue block using same protocol as tissue no. 4 in the multitissue block using same protocol as in Fig. 1a. Virtually all the neoplastic cells show a moderate in Figs. 1b & 2b. Only scattered neoplastic cells show a to strong and distinct reaction with no background reaction. weak reaction - same field as in Fig. 3a.

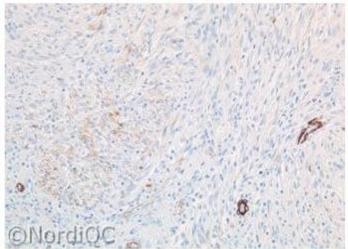


Fig. 3b. Insufficient ASMA staining of the leiomyosarcoma

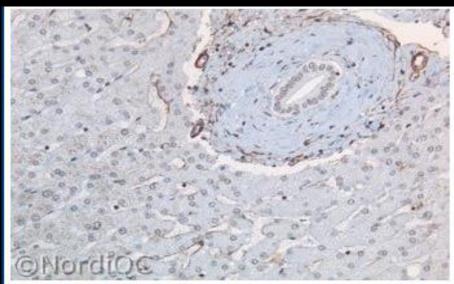


Fig. 4a. Insufficient ASMA staining of the liver using the mAb clone 1A4 with HIER in Cell Conditioning 1 (CC1) on the BenchMark XT, Ventana.

Scattered perisinusoidal smooth muscle cells are demonstrated, but the liver cells and the epithelial cells of the bile duct show a false positive nuclear reaction. This pattern was frequently seen when the mAb clone 1A4 was applied with HIER in CC1 and stained on the BenchMark XT, Ventana. Compare with Fig. 1a.

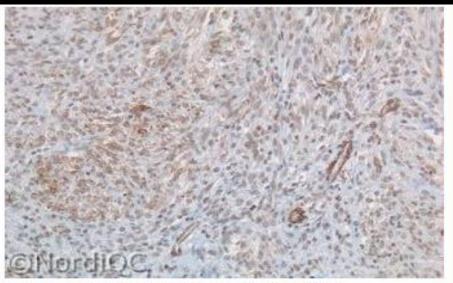
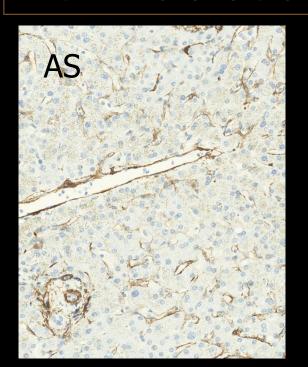
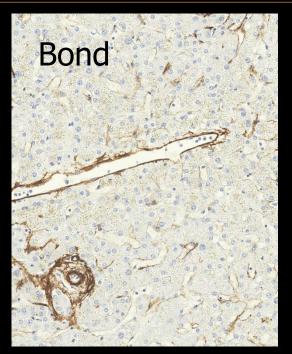


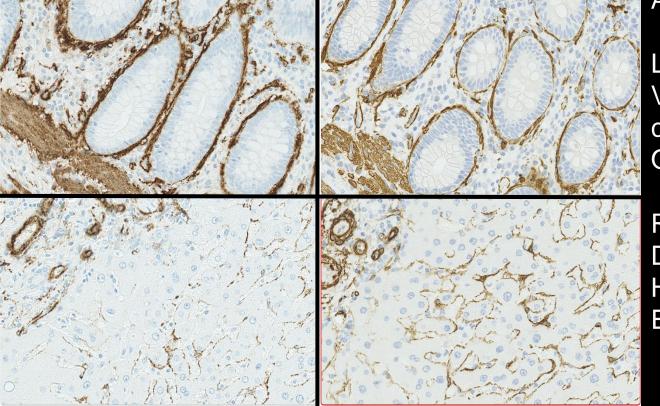
Fig. 4b. Left: Insufficient ASMA staining of the leiomyosarcoma tissue no. 4 in the multi block using same protocol as in Fig. 4a. The neoplastic cells show a false positive positive nuclear reaction, while the specific cytoplasmic reaction is virtually absent. Compare with Fig. 3a - same field.


Table 3. Proportion of optimal results for ASMA for the most commonly used antibody as concentrate on the 3 main IHC systems*


5 main the systems								
Concentrated	Dako Ventana				Leica			
antibodies	Autostainer Link / Classic		lassic BenchMark XT / Ultra		Bond III / Max			
	TRS pH 9.0	TRS pH 6.1	CC1 pH 8.5	CC2 pH 6.0	ER2 pH 9.0	ER1 pH 6.0		
mAb clone 1A4	14/25** (56%)	0/2	1/29 (3%)	0/2	5/7 (71%)	1/3		


^{*} Antibody concentration applied as listed above, HIER buffers and detection kits used as provided by the vendors of the respective systems.

^{** (}number of optimal results/number of laboratories using this buffer)


Protocol for clone depending on IHC stainer

mAb clone 1A4 (Dako*)	Dako AS48	Leica Bond III	VMS Ultra
Titre	1:100-500* / RTU	1:200-500*	1:100-300*
Retrieval	HIER TRS High	HIER ER 2	None
Detection	2- or 3-step	3-step	3-step

Breast panel: ASMA – Ventana BenchMark
Basic protocol settings for an optimal staining result (NQC)

	Retrieval	Titre	Detection	RTU	Detection
rmAb EP188	P2 4M + CC1M	1:200	3-step OP + AMP	-	-

ASMA:

Left: EP188, VMS platform, combined retrieval OptiView + AMP

Right: 1A4
Dako platform
HIER
EnVision FLEX

Performance history

This was the fourth NordiQC assessment of ASMA and as shown in table 2 the pass rates have been constant at a relatively low level throughout all runs.


Table 2. Proportion of sufficient results for ASMA in the four NordiQC runs performed

	Run 10 2004	Run 21 2007	Run 27 2009	Run 44 2015
Participants, n=	71	106	124	234
Sufficient results	62%	63%	64%	60%

Conclusion

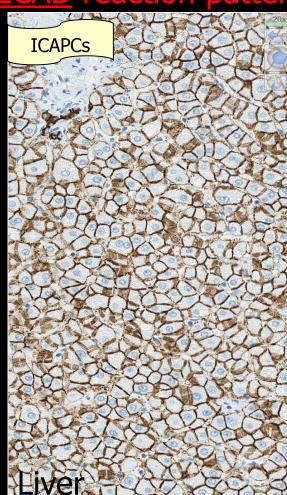
The mAb clones **1A4**, **asm-1** and rmAb clone **EP188** could all be used to obtain an optimal staining result. Using the two most widely used ASMA antibodies (clone 1A4 and asm-1) HIER and careful calibration of the titre of the primary antibody were the main prerequisites for optimal results.

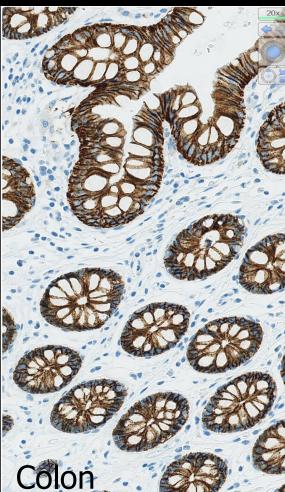
The performance of clone 1A4 seems to be influenced by the stainer platform as a significantly reduced proportion of sufficient results was observed when used on the Ventana BenchMark platform compared to Dako Autostainer and Leica BOND platforms.

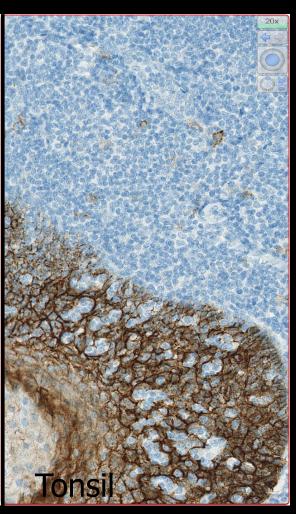
Breast panel:

- GCDFP-15
- Mammaglobin
- Gata 3
- Smooth MHCM
- ASMA
- (p63)
- E-cadherin
- p120
- ER
- PR
- HER-2

Is it primary breast?


Is it invasive?


Is it lobular or ductal?


Which teraphy?

ECAD reaction pattern

An at least weak to moderate membranous staining reaction of virtually all the hepatocytes.

A moderate to strong, distinct membranous staining reaction of virtually all the columnar epithelial cells in the colon / appendix.

A moderate to strong, distinct membranous staining reaction of virtually all squamous epithelial cells. No staining reaction of the vast majority of lymphocytes.

Table 1. Antobodies and assessment marks for ECAD run 39								
Concentrated antibodies	n	Vendor	Optimal	Good	Borderline	Poor	Suff.1	Suff. OPS ²
mAb clone 36	1	BD Biosciences	0	0	1	0	-	-
mAb clone 36B5	16 1	Leica/Novocastra Vector	2	13	2	0	88 %	100 %
mAb clone 4A2C7	5	Invitrogen/Zymed	0	3	2	0	60 %	-
mAb clone BSH38	1	Nordic Biosite	0	1	0	0	-	-
mAb clone ECH-6	1	Zytomed	1	0	0	0	-	-
mAb clone HECD-1	9 2 1 1	Invitrogen/Zymed Immunologic Abcam Biocare	7	6	0	0	100 %	100 %
mAb clone NCH-38	90 5	Dako Thermo/NeoMarkers	59	30	6	0	94 %	94 %
mAb clone SPM471	1	Thermo/NeoMarkers	0	1	0	0	-	-
rmAb clone EP6	2	Epitomics	0	2	0	0	-	-
rmAb clone EP700Y	6 1 1 1 1	Cell Marque Biocare Bio SB Thermo/NeoMarkers Zytomed	0	7	1	2	70 %	-
Unknown	1	Unknown	1	0	0	0	-	•
Ready-To-Use Antibodies								
mAb clone 36 790-4497	51	Ventana	6	12	32	1	35 %	38 %
mAb clone 36B5 PA0387	10	Leica	0	10	0	0	100 %	-
mAb clone NCH-38 IR/IS059	44	Dako	40	4	0	0	100 %	100 %
mAb clone NCH-38 GA059	1	Dako	1	0	0	0	-	1
rmAb clone EP700Y 760-4440	16	Ventana/Cell Marque	0	15	1	0	94 %	- 1999
rmAb clone EP700Y 246R-1x	1	Cell Marque	0	1	0	0	-	-
rmAb clone EP700Y MAD-000051QD	1	Master Diagnostica	0	1	0	0	-	-
Total	271		117	106	45	3	-	
Proportion	L_		43 %	39 %	17 %	1 %	82 %	
1) Proportion of sufficient stains (optin	nal or	good), 2) Proportion of sufficient	stains with	optimal pro	tocol settings	only, see b	oelow.	

mAb clones HECD-1 & NCH-38 most successful

HIER 2 or 3-step mul/pol.

mAb clone 36 aberrant nuclear staining reaction

rmAb clone EP700y inferior signal-to-noise

Fig. 1a. Optimal staining for ECAD of the liver using the mAb clone NCH-38 with HIER. Virtually all the hepatocytes show a moderate distinct membranous reaction, while the epithelial cells of the bile ducts show a strong staining.

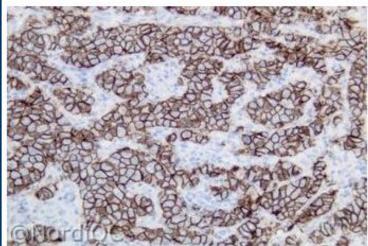


Fig. 2a. Optimal ECAD staining of the ductal breast carcinoma using same protocol as in Fig. 1a. The majority of the neoplastic cells show a strong distinct membranous reaction with no background reaction.

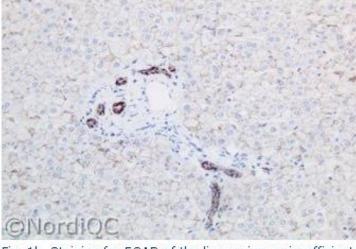
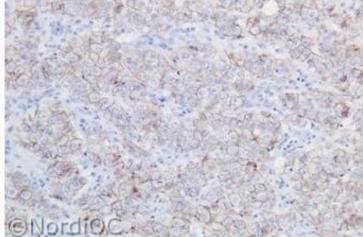
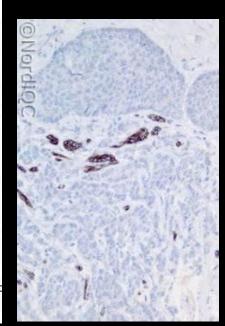
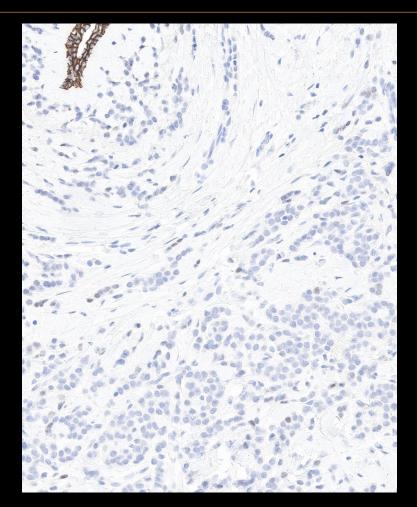


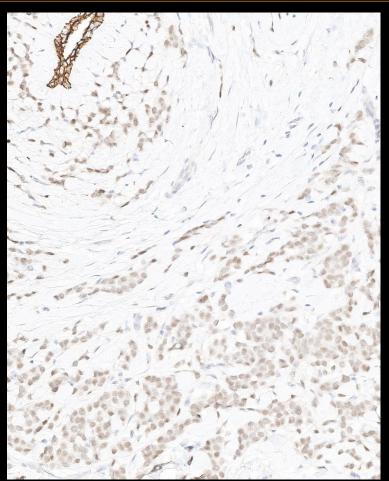
Fig. 1b. Staining for ECAD of the liver using an insufficient protocol based on the same mAb clone NCH-38 as in Fig. 1a, but in a too low concentration. The hepatocytes only show a weak disrupted membranous reaction – same field as in Fig. 1a.




Fig. 2b. Staining for ECAD of the ductal breast carcinoma using same insufficient protocol as in Fig. 1b. The neoplastic cells only show a weak diffuse membranous reaction – also compare with Fig. 3b – same protocol.

E-Cadherin

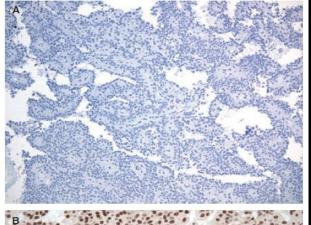

Liver


CSQI:

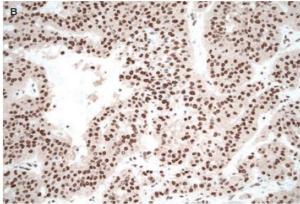
Hepatocytes

Lobular breast carcinoma mAb clone HECD-1 or NCH-38 mAb clone 36

Technical? Biology?


Histopathology 2008, 52, 325-330. DOI: 10.1111/j.1365-2559.2007.02949.x

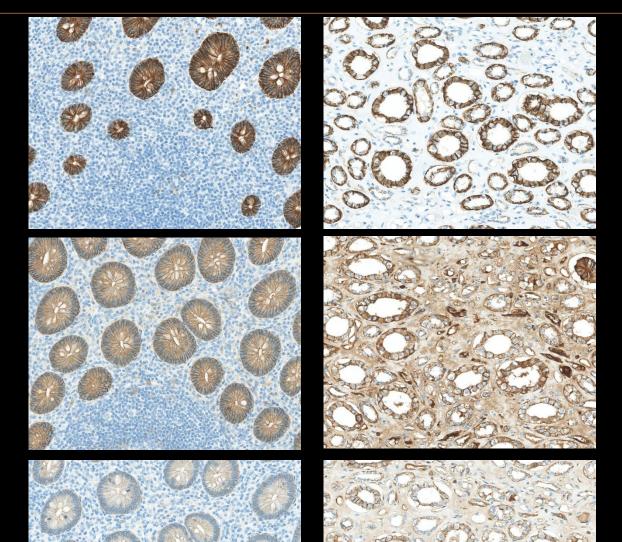
Membrane loss and aberrant nuclear localization of E-cadherin are consistent features of solid pseudopapillary tumour of the pancreas. An immunohistochemical study using two antibodies recognizing different domains of the E-cadherin molecule


R Chetty & S Serra

Department of Pathology, University Health Network/Toronto Medical Laboratories, University of Toronto, Toronto, ON, Canada

Table 1. Clinicopathological features and immunohistochemistry							
Case	Gender	Age (years)	Size (mm)	Site	β-Catenin	E-cadherin clone 36	E-cadherin clone 36B
1	F	32	52	Head	Nuc/cyto	Nuclear	Negative
2	F	40	68	Tail	Nuc/cyto	Nuclear	Negative
3	F	45	55	Body/tail	Nuc/cyto	Nuclear	Negative
4	F	39	35	Head	Nuc/cyto	Nuclear	Negative
5	F	24	45	Head	Nuc/cyto	Nuclear	Negative
6	F	31	88	Tail	Nuc/cyto	Nuclear	Negative
7	F	43	40	Tail	Nuc/cyto	Nuclear	Negative
8	Μ	45	35	Tail	Nuc/cyto	Nuclear	Negative
9	F	39	32	Tail	Nuc/cyto	Nuclear	Negative
10	F	20	31	Body/tail	Nuc/cyto	Nuclear	Negative
11	F	43	130	Tail	Nuc/cyto	Nuclear	Negative
12	F	39	63	Tail	Nuc/cyto	Nuclear	Negative
13	F	11	80	Body/tail	Nuc/cyto	Nuclear	Negative
14	F	61	90	Tail	Nuc/cyto	Nuclear	Negative
15	M	62	170	Body/tail	Nuc/cyto	Nuclear	Negative
16	F	40	45	Tail	Nuc/cyto	Nuclear	Negative
17	F	52	20	Body/tail	Nuc/cyto	Nuclear	Negative
18	F	19	53	Body/tail	Nuc/cyto	Nuclear	Negative
19	F	36	70	Tail	Nuc/cyto	Nuclear	Negative
20	F	13	50	Head	Nuc/cyto	Nuclear	Negative

mAb 36B5

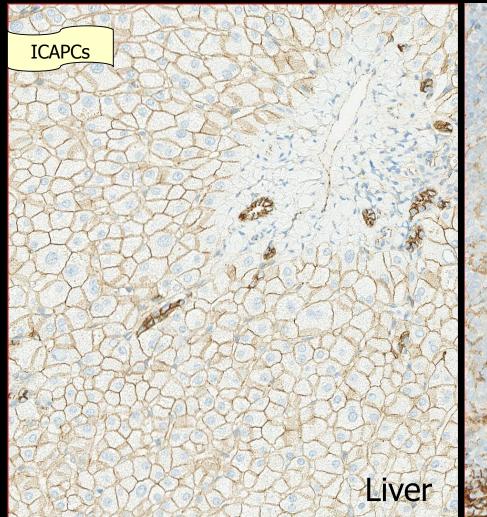


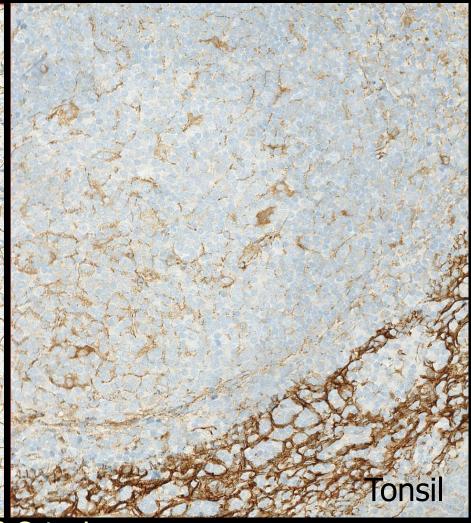
mAb 36

Clone 36 reacts with cytoplasmic component

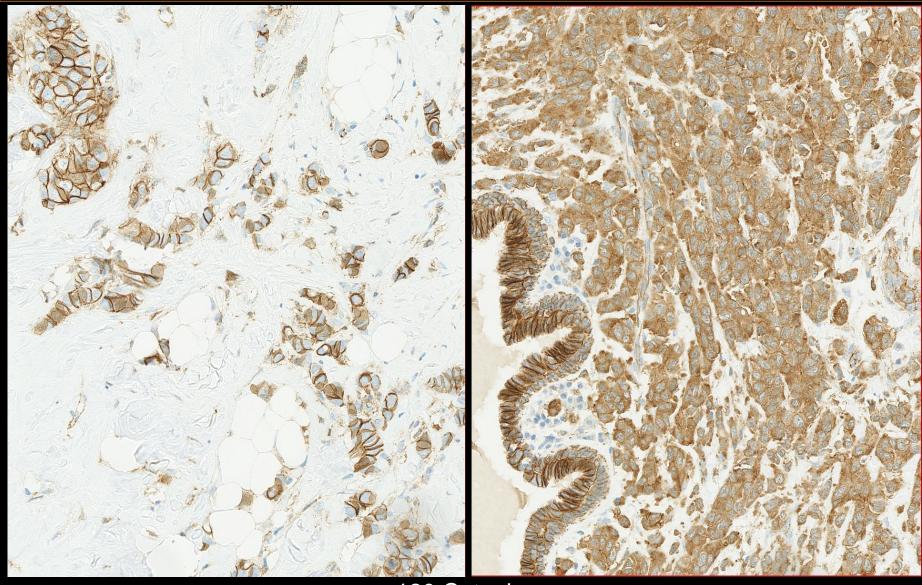
Nuclear localization might occur due to B-Cat mutation (has to be confirmed and no data on breast tumours).

NCH-38 vs EP700Y


Colon - Kidney NCH-38


Colon - Kidney EP700Y Titre A

Colon – Kidney EP700Y Titre B


p120 Catenin

An at least weak to moderate membranous staining reaction of virtually all the hepatocytes. A moderate to strong pre-dominantly membranous staining reaction must be seen all epithelial cells of bile ducts.

An at least weak to moderate membranous staining reaction of germinal centre macrophages and the follicular dendritic network.

74

p120 Catenin

Lobular carc. Ductal carc.

Breast panel: E-Cadherin (& *p120*)
Basic protocol settings for an optimal staining result (NQC)

E-CAD	Retrieval	Titre	Detection	RTU	Detection
mAb NCH-38	HIER High	1:25-100	2- & 3-step	Dako	2- & 3-step
mAb HECD-1	HIER High	1:200-1.000	2- & 3-step	-	-
mAb 36B5	HIER High	1:50	2- & 3-step	-	-
mAb ECH-6	HIER High	1:100	2-step	_	-
mAb 36	HIER High	-	-	Ventana	2-step*

^{*} Short incubation time 8-16 min. and 2-step multimer

p120	Retrieval	Titre	Detection	RTU	Detection
mAb MRQ-5	HIER high	1:25-100	2- & 3-step	-	-